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We introduce a second quantization scheme based on quasinormal modes, which are the dissipative
modes of leaky optical cavities and plasmonic resonators with complex eigenfrequencies. The theory
enables the construction of multiplasmon or multiphoton Fock states for arbitrary three-dimensional
dissipative resonators and gives a solid understanding to the limits of phenomenological dissipative Jaynes-
Cummings models. In the general case, we show how different quasinormal modes interfere through an off-
diagonal mode coupling and demonstrate how these results affect cavity-modified spontaneous emission.
To illustrate the practical application of the theory, we show examples using a gold nanorod dimer and a
hybrid dielectric-metal cavity structure.

DOI: 10.1103/PhysRevLett.122.213901

Open cavity systems such as micropillars [1–3], pho-
tonic crystal cavities [4,5], metal resonators [6–9], and
hybrid metal-dielectric cavities [10,11] are of interest for
fundamental quantum optics and emerging technologies,
including two-photon lasing [12], spasing [13,14], and
quantum information processing [15]. In such systems, one
goal of quantum optics is to describe the electric field as an
operator associated with the creation and annihilation of
photons or plasmons. One important example is the “modes
of the Universe” approach [16–20]; another is the Jaynes-
Cummings (JC) model [21,22], which describes multi-
photon interactions between a quantized cavity mode and
quantum emitters such as molecules, two-level atoms, or
quantum dots [23–25]. A major restriction of the JC model
is that the quantization procedure starts with the quantized
modes of a closed cavity made from a lossless material.
Such modes have real eigenfrequencies and can be nor-
malized in a straightforward way [22]. For cavities with
very low radiative loss, as usually quantified by a high
quality factor Q, dissipation is often modeled through the
second-order system-reservoir theory [22] or quantum
stochastical differential equation methods [26,27]. For
low Q cavities, however, or in the case of metallic
resonators, such approaches are ambiguous, and the con-
cept of a closed cavity is clearly problematic.
While much progress has been made by treating the

dissipation through the electromagnetic environment sur-
rounding highQ cavities as a bath, very little has been done
in terms of quantized dissipative modes, especially in
plasmonics. One heuristic approach has been to assume

a phenomenological dissipative JC model, which for metals
assumes parameters normally used for cavity modes and
where the total plasmon loss is treated phenomenologically
[28]. Other notable approaches include the use of a
projection operator applied to dielectric coupled-cavity
systems [29] or treating the electromagnetic environment
by expansions in terms of pseudomodes [30,31] or quasi-
normal modes (QNMs) [32]. The QNMs offer tremendous
insight and efficiency for describing electromagnetic scat-
tering and semiclassical light-matter interaction [33–38].
Typically, only a few QNMs and often just one QNM is
needed, and it has recently been recognized that a quantum
theory based on QNMs would represent a “major milestone
in quantum optics” [39]. While some progress in this
direction has been made for one-dimensional dielectric
structures [40,41], these particular approaches do not lead
to the construction of Fock states, which forms the natural
basis for studying multiplasmon or multiphoton dynamics.
In this Letter, we present a rigorous quantization scheme

for leaky optical cavities and plasmonic resonators using
QNMs, which—in contrast to typical approaches to lossy
materials—enables the construction of Fock states, as
illustrated in Fig. 1. We solve the main challenges related
to the non-Hermitian nature of the problem by introducing
a symmetrization scheme for creation and annihilation
operators associated with the resonator QNMs. Using the
symmetrized operators, which satisfy canonical commuta-
tion relations, we derive the associated QNM-JC model for
solving problems in multiplasmon or multiphoton quantum
optics. To illustrate the practical application of the theory,
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in the case of a single QNM, we first use an example
of a gold nanorod resonator, as illustrated in Fig. 1.
Subsequently, we present the two-QNM-JC model and
exemplify using a hybrid metal-dielectric cavity to high-
light how modes quantum-mechanically interfere, leading
to a dramatic breakdown of phenomenological dissipative
JC models.
Theory.—We consider the interaction between a two-

level emitter and the total electric field in the presence of a
dispersive and absorptive, spatially inhomogeneous
medium. The total Hamiltonian Htotal ¼ Ha þHB þHI ,
based on the seminal approaches from Refs. [42–46], is

Htotal ¼ ℏωaσ
þσ− þ ℏ

Z
dr

Z
∞

0

dωωb†ðr;ωÞ · bðr;ωÞ

−
�
σþ

Z
∞

0

dωda · Êðra;ωÞ þ H:a:

�
; ð1Þ

where ℏ is the reduced Planck constant, ωa and da are
the resonance frequency and dipole moment of the
emitter, respectively, σ� denote raising and lowering
operators, and we use a dipole-field interaction in the
rotating wave approximation; the annihilation and creation
operators bðr;ωÞ and b†ðr;ωÞ act on joint excitations of
the surrounding lossy media and electromagnetic degrees
of freedom and satisfy canonical commutation relations
[44]. The electric field operator fulfills the equation
∇×∇×Êðr;ωÞ−k20ϵðr;ωÞÊðr;ωÞ¼ iωμ0ĵnoiseðr;ωÞ, where
k0 ¼ ω=c, c ¼ 1=

ffiffiffiffiffiffiffiffiffi
μ0ϵ0

p
is the speed of light,

ϵðr;ωÞ ¼ ϵRðr;ωÞ þ iϵIðr;ωÞ is a complex permittivity,
describing passive media [ϵIðr;ωÞ > 0] and fulfilling
the Kramers-Kronig relations, and ĵnoiseðr;ωÞ ¼
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðℏϵ0=πÞϵIðr;ωÞ
p

bðr;ωÞ, with ϵ0 denoting the permit-
tivity of free space [44,47]. A formal solution is

Êðr; ωÞ ¼ i=ðωϵ0Þ
R
dr0Gðr; r0; ωÞĵnoiseðr0; ωÞ, where

Gðr; r0;ωÞ is the electric field Green’s function, fulfilling
∇×∇×Gðr;r0;ωÞ−k20ϵðr;ωÞGðr;r0;ωÞ¼k20δðr−r0Þ and a
suitable radiation condition. At this point, the quantization
scheme from Ref. [44] provides already an intuitive picture
for treating the system, but the frequency and spatial
indices of bð†Þðr;ωÞ prevent numerical evaluations of the
density matrix for applications beyond single photons
(weak excitation).
To derive creation and annihilation operators for pho-

tonic or plasmonic resonances, we begin with the vector-
valued QNM eigenfunctions f̃μðrÞ, defined from

∇ × ∇ × f̃μðrÞ −
ω̃2
μ

c2
ϵðr; ω̃μÞf̃μðrÞ ¼ 0; ð2Þ

with a suitable boundary condition, e.g., the Silver-Müller
radiation condition [48]. The QNM eigenfrequencies ω̃μ ¼
ωμ − iγμ are complex, with γμ > 0 describing loss. For
positions close to an electromagnetic resonator, the
Gðr; r0;ωÞ can often be very accurately approximated by
an expansion of only a few dominant QNMs of the form
[33–36,49] GQNMðr; r0;ωÞ ¼

P
μAμðωÞf̃μðrÞf̃μðr0Þ, where

the QNMs are normalized [33,34,36,48]; for calculations in
this work, we use the form AμðωÞ ¼ ω=½2ðω̃μ − ωÞ�. Since
the QNMs f̃μðrÞ diverge in the far field, we replace f̃μðrÞ in
GQNMðr; r0;ωÞ for positions outside the resonator geometry
with a regularization based on a Dyson equation approach
[50], F̃μðr;ωÞ ¼

R
V dr

0GBðr; r0;ωÞΔϵðr0;ωÞf̃μðr0Þ, where
GB is the homogeneous background medium Green’s
function, with constant permittivity ϵB, Δϵðr0;ωÞ ¼
ϵðr0;ωÞ − ϵB, and V is the resonator geometry volume.
The electric field operator is ÊðrÞ ¼ R∞

0 dωÊðr;ωÞ þ H:a:
and can be expanded in basis functions of the
Green’s function as in Refs. [51–54]. Inspired by
this elegant approach [51], we use instead an
expansion using few dominating (regularized) QNMs as
in GQNMðr; r0;ωÞ, so that the source field expression
of the electric field operator can be rewritten
ÊðrÞ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2ϵ0Þ

p P
μ

ffiffiffiffiffiffi
ωμ

p f̃μðrÞα̃μ þ H:a:, for positions
inside V, which allows us to define QNM operators α̃μ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðπωμÞ

p R
∞
0 dωAμðωÞ

R
dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵIðr;ωÞ

p
f̃μðrÞ · bðr;ωÞ; for

positions outside V in the spatial integral, f̃μðrÞ is replaced
by the regularized QNM F̃μðr;ωÞ. The QNM operators are
formed by the integral over the oscillator operators bðr;ωÞ,
that collectively form the QNM resonance. For most
practical examples, the use of few (one or two) QNMs
has been shown to provide very accurate results in the
weak-coupling regime [11,55]; this is typically the case
in cavity-QED systems using resonators. Using the
canonical commutation relations for bðr;ωÞ, the equal-
time commutation relations for the QNM raising and

FIG. 1. Schematic of the QNM-JC model for a two-level
emitter, e.g., in the form of a colloidal quantum dot coupled
to a single QNM of a plasmonic dimer of gold nanorods. The
electronic states jei and jgi are coupled to the plasmonic Fock
states jni via the coupling constant gc. Quantum fluctuations
associated with the electromagnetic dissipation enter naturally
through the operator F̂c.
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lowering operators become ½α̃μ; α̃η� ¼ ½α̃†μ; α̃†η� ¼ 0 and

½α̃μ; α̃†η�≡ Sμη, respectively, in which

Sμη ¼
Z

∞

0

dω
2AμðωÞA�

ηðωÞ
π

ffiffiffiffiffiffiffiffiffiffiffi
ωμωη

p ½Snradμη ðωÞ þ Sradμη ðωÞ�; ð3Þ

where Snradμη ðωÞ¼R
V drϵIðr;ωÞf̃μðrÞ · f̃�ηðrÞ reflects absorp-

tion due to the resonator material and Sradμη ðωÞ ¼
c2=ð2iω2Þ RSV dAsf½n̂s × ð∇s × F̃μðs;ωÞÞ� · F̃�

ηðs;ωÞ− ½n̂s×

(∇s × F̃�
ηðs;ωÞ)� · F̃μðs;ωÞg describes radiation leaving the

system through the surface SV with the normal vector n̂s
pointing into V [56]. The matrix ðSÞμη is a Hermitian
semipositive definite overlap matrix between different
QNMs μ and η and is not a Kronecker delta as would
be the case for closed, dielectric cavities. It is strictly
positive definite if the modes are linearly independent,
which we assume here. Since noncanonical commutation
relations prevent the construction of Fock states, we
introduce new operators via a symmetrizing orthonormal-
ization transformation [62]:

aμ ¼
X
ν

ðS−1=2Þμνα̃ν; a†μ ¼
X
ν

ðS−1=2Þνμα̃†ν; ð4Þ

yielding ½aμ; a†η� ¼ δμη. The operators aμ and a†μ are there-
fore proper annihilation and creation operators, respec-
tively, for obtaining Fock states jni≡ jn1; n2;…i from the
vacuum state j0i. The electric field expressed by aμ, a

†
μ is

then

ÊðrÞ ¼ i

ffiffiffiffiffiffiffi
ℏ
2ϵ0

s X
μ

ffiffiffiffiffiffi
ωμ

p
f̃sμðrÞaμ þ H:a:; ð5Þ

in the desired basis and with symmetrized QNM functions
f̃sμðrÞ ¼

P
νðS1=2Þνμ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ων=ωμ

p
f̃νðrÞ. For a single QNM,

μ ¼ ν ¼ c, we get ÊðrÞ ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏωc=ð2ϵ0Þ

p
f̃scðrÞaþ H:a:,

with f̃scðrÞ ¼
ffiffiffiffiffi
Sc

p
f̃cðrÞ, Sc ¼ Scc, and a≡ ac. The dynam-

ics of the operators aμ are governed by the Heisenberg
equations of motion [56],

d
dt

aμ ¼ −
i
ℏ
½aμ; Hsys� −

X
η

χð−Þμη aη þ F̂μ; ð6Þ

where Hsys ¼ Hem þHa þHI is the effective system

Hamiltonian in the symmetrized basis and Hem ¼
ℏ
P

μηχ
ðþÞ
μη a†μaη is the electromagnetic part with nondiago-

nal terms η ≠ μ, that includes coupling between different
symmetrized QNMs μ and η [40]; HI ¼ −iℏ

P
μgμσ

þaμ þ
H:a: is derived from HI in Eq. (1) by inserting Eq. (5);
this yields an emitter-QNM dipole-field interaction
in the symmetrized basis gμ ¼

P
ηðS1=2Þημg̃η, with

g̃μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωμ=ð2ϵ0ℏÞ

p
da · f̃μðraÞ. In contrast to a phenomeno-

logical approach, complex QNM eigenfrequencies and
complex eigenfunctions are used to obtain gμ. The
coupling between different QNMs is induced by the
symmetrizing transformation, Eq. (4), and the coupling

constant χðþÞ
μη is given via χðþÞ

μη ¼ 1
2
ðχμη þ χ�ημÞ, where

χμη ¼
P

νðS−1=2Þμνω̃νðS1=2Þνη. The two additional terms

in Eq. (6) account for dissipation of energy through χð−Þμη ¼
ði=2Þðχμη − χ�ημÞ and coupling to a noise term F̂μ ¼P

νðS−1=2Þμν
R
∞
0 dωCνðωÞ

R
dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωϵIðr;ωÞ

p
f̃νðrÞ · bðr;ωÞ,

with CνðωÞ ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω=ð2πωνÞ

p
. The presence of the noise

term preserves the commutation relation ½aμ; a†η� ¼ δμη
temporally by exactly counteracting the damping due to
dissipation. Equation (6) has the form of a Langevin
equation with noise operators F̂μ [26,27]. In the following,
we use it to set up the QNM-JC model and derive the
associated quantum master equations for the illustrative
cases of one and two QNMs; we refer to Ref. [56] for the
general case.
(I) One-QNM-JC model.—We consider the material

system from Fig. 1 consisting of an emitter at the position
ra, directly in the center of a plasmonic dimer of nanorods
supporting a single QNM with index c, in which case Hem

takes the simplified form Hem ¼ ℏωca†a, and the inter-
action Hamiltonian becomes HI ¼ −iℏðgcσþa − H:a:Þ,
with gc ¼

ffiffiffiffiffi
Sc

p
g̃c and χð−Þμη ¼ −Imðω̃cÞ ¼ γc. All system

operators evolve according to a quantum Langevin equa-
tion similar to Eq. (6). Employing stochastic Ito-
Stratonovich calculus [27], we can bring these equations
into a Lindblad master equation form. To this end, we treat
the quantum noise operator F̂c as an input field, which
represents white noise of a reservoir with temperature
T ¼ 0 K [56]. After some algebra, we find the one-
QNM master equation

∂tρ ¼ −
i
ℏ
½Hsys; ρ� þ γcð2aρa† − a†aρ − ρa†aÞ: ð7Þ

For a more detailed interpretation of the normalization Sc,
it is instructive to consider the cavity-modified spontaneous
emission rate in the bad cavity limit. We adiabatically
eliminate the electromagnetic degrees of freedom
from Eq. (7), to obtain a master equation for the emitter
density matrix alone, consisting of the dissipator term
L½σ−�ρ ¼ Γð2σ−ρσþ − σþσ−ρ − ρσþσ−Þ, with spontane-
ous emission rate Γ ¼ γcjgcj2=ðΔ2

ca þ γ2cÞ and detuning
Δca ¼ ωc − ωa [56]. In cases where the single QNM
expansion is a good approximation to the Green’s
function throughout the entire resonator volume,
we expect to recover the semiclassical result Γ ¼
ð2=ℏϵ0Þda · Im½Gðra; ra;ωÞ� · da, i.e., the local density of
states modeled via the photonic Green’s function in a QNM
approximation [37,55]. In the present case of the plasmonic
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dimer, we find a very good agreement, as seen in Fig. 2,
showing the Purcell factor FP ¼ Γ=Γ0, where Γ0 is the
spontaneous emission rate in a homogeneous medium.
Although the agreement in Fig. 2 is already striking
(especially given the completely different nature of the
calculations [56]), we remark that the restriction to a few
dominant QNMs in the QNM-JC model, when applied to
spontaneous emission, is generally different, and typically
less accurate, than the use of the same approximation to the
Green’s function in a semiclassical approach. Whereas
the latter relies only on the expansion at a single point, the
QNM-JC model is based on integrals of the QNMs
throughout the resonator material to obtain Sc. For the
plasmonic dimer, we find Snradc ¼ 0.58 and Sradc ¼ 0.40.
In addition, Snradc and Sradc yield the nonradiative and
radiative beta factor, respectively, via βnrad ¼ Snradc =Sc
and βrad ¼ Sradc =Sc. See [56] for details of the QNM
calculation, f̃μðraÞ, and material parameters.
(II) Two-QNM-JC model.—We next discuss a case

where cross terms χμη of two QNMs μ, η ¼ 1, 2 cause
interference effects, clearly not available in phenomeno-
logical quantization approaches. Starting again from the
quantum Langevin equation in Eq. (6), we derive a
Lindblad master equation analogue to the one-mode case,
using the additional assumptions [27] that the two input
fields associated with F̂μ (μ ¼ 1, 2) are independent from
each other and that the real parts of the eigenfrequencies ω1

and ω2 are not degenerate [63]. Again, following the
approach of Ref. [27], we now obtain the two-QNMmaster
equation

∂tρ ¼ −
i
ℏ
½Hsys; ρ� þ L½a�ρ; ð8Þ

where ωμ are no longer eigenvalues of the electromagnetic
part of the Hamiltonian, since an intermode coupling
appears. Instead, a pair of shifted eigenfrequencies ωs

μ is
formed [see Fig. 3(c)]. We stress that the Lindblad

dissipator L½a�ρ ¼ P
μ;ηχ

ð−Þ
μη ð2aηρa†μ − a†μaηρ − ρa†μaηÞ

contains also processes with interacting QNMs μ ≠ η.
Although the above off-diagonal coupling may seem

unusual, it is known that a significant mode interference,
such as a “Fano-type” resonance, can occur because of the
different phase terms of overlapping QNMs [11,64]. In the
QNM-JC model, this interference is captured by the off-
diagonal terms, as illustrated in Fig. 3, where we study the
electromagnetic response of the metal dimer from (I) on
top of a high-Q photonic crystal cavity [see Fig. 3(a)].
Figure 3(b) shows the two QNMs of interest and the
semiclassical result of the Purcell factor as calculated using
a two-QNM approximation [11,56]; Fig. 3(c) shows the
corresponding results of the QNM-JC model in this
pronounced QNM coupling regime [65]. The system
parameters indicate the bad cavity limit, where the
QNM-JC master equation consists of a Lindblad dissipator
for spontaneous emission of the form L½σ−�ρ ¼
Γð2σ−ρσþ−σþσ−ρ−ρσþσ−Þ, in which Γ ¼ Γdiag þ Γndiag

with a diagonal contribution Γdiag ¼ P
μSμμjg̃μj2γμ=

ðΔ2
μa þ γ2μÞ and a nondiagonal contribution Γndiag ¼P
μ;η≠μg̃μSμηg̃

�
ηKμη, which is here expressed in terms of

the coupling matrix Kμη¼½iðωμ−ωηÞþγμþγη�=½2ðΔμa−
iγμÞðΔηaþiγηÞ� [56]. Comparing the results in Fig. 3, one

FIG. 2. (a) Purcell factor FP as a function of the energy for the
plasmonic dimer in Fig. 1. Solid and dashed curves show the results
of the QNM-JCmodel and a semiclassical approach, using a single
QNM Green’s function approximation, respectively. (b) Normal-
ized spatial profile of the QNM of interest with ω̃cðeVÞ ¼
1.7786 − 0.0677i, corresponding to Q ¼ ωc=ð2γcÞ ≈ 13.

FIG. 3. (a) Gold dimer on top of a photonic crystal cavity,
supporting two overlapping QNMs with frequencies ω̃2ðeVÞ ¼
1.6063 − 0.0145i and ω̃1ðeVÞ ¼ 1.6428–0.0548i (mode 1 orig-
inates from the dimer). (b) QNM profiles and semiclassical
Purcell factor as a function of the energy. (c) QNM-JC Purcell
factor with diagonal contributions Γdiag (black dashed line,
scaled) and the full emission rate Γ ¼ Γdiag þ Γndiag (solid blue
line). Vertical solid and dashed lines show the shifted and original
eigenfrequencies, respectively.
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sees that the two-QNM-JC model recovers the result of the
semiclassical calculation, including the pronounced Fano-
type interference effect. In a phenomenological dissipative
two-mode JC model, the Lindblad dissipator is simply
L½σ−�ρ ¼ P

iΓið2σ−ρσþ − σþσ−ρ − ρσþσ−Þ and Γi ¼
jgij2γi=ðΔ2

ia þ γ2i Þ is the diagonal cavity-modified rate
for each of the two modes. Clearly, such a model cannot
produce the aforementioned interference effect, as illus-
trated by the black dashed curve in Fig. 3(c).
By construction, the symmetrized raising and lowering

operators fulfill all requirements for use in the construction of
a Fock space. Combined with the fact that the one- and two-
QNM-JC master equations recover the semiclassical results
in the single excitation subspace, where a direct comparison
to reference calculations is possible, we consider the
approach rigorous enough that one can apply the QNM-JC
model also to problems inmultiplasmon ormultiphoton Fock
spaces. Although we have connected to the bad cavity limit,
the QNM master equation now allows one to explore multi-
photon dynamics, which will be the subject of future work.
In conclusion, by use of a symmetrization procedure, we

have introduced creation and annihilation operators,
allowing the construction of QNM Fock states and the
derivation of a physically meaningful and intuitive QNM-
JCmodel for use in dissipative cavity-QEDvalid for arbitrary
dissipative structures. We have shown example applications
of the theory for a plasmonic dimer to verify that the QNM-
JC model recovers the semiclassical result in Purcell factor
calculations. Finally, we discussed the highly nontrivial case
of a two-QNM-JC model, where interference effects cannot
be neglected. In this case, the model recovers the semi-
classical result only because of off-diagonal coupling terms,
which are not present in phenomenological dissipative JC
models. Contrary to phenomenological approaches, all
parameters entering the model are rigorously defined and
can be calculated by use of the relevant QNMs. The model
thus provides a solid foundation for the use of the JC model
and a rigorous extension of the model to several modes and
possibly dissipativematerials, inwhich the quantized “cavity
modes” of optical cavities or plasmonic resonators appear as
linear combinations of the associated QNMs.
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