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Equilibrium spatiotemporal correlation functions are central to understanding weak nonequilibrium
physics. In certain local one-dimensional classical systems with three conservation laws they show
universal features. Namely, fluctuations around ballistically propagating sound modes can be described by
the celebrated Kardar-Parisi-Zhang (KPZ) universality class. Can such a universality class be found also in
quantum systems? By unambiguously demonstrating that the KPZ scaling function describes magneti-
zation dynamics in the SUð2Þ symmetric Heisenberg spin chain we show, for the first time, that this is so.
We achieve that by introducing new theoretical and numerical tools, and make a puzzling observation that
the conservation of energy does not seem to matter for the KPZ physics.

DOI: 10.1103/PhysRevLett.122.210602

Introduction.—Universality—where different systems
can be described by the same underlying mathematical
structure—is at the core of our understanding of nature. For
instance, the properties of any thermalizing system can be
described by the same equilibrium ensembles of statistical
physics. Out of equilibrium less is known in general, in a
way justifiably so, simply because the world of nonequili-
brium is much richer. One of the more famous universality
classes that can (among other) describe various nonequili-
brium phenomena [1] is that of the Kardar-Parisi-Zhang
(KPZ) equation. The KPZ equation was originally intro-
duced to describe stochastic growth of surfaces [2], and is a
diffusion equation with the simplest possible nonlinearity
(relevant at large scales) and an additional white noise
term (equivalently, the surface’s slope is described by the
stochastic Burgers equation). Besides describing surface
dynamics it can be found in various contexts, ranging from
exclusion processes to random matrix theory; for a review
see Ref. [3]. The KPZ equation itself harbors rich math-
ematical problems [4].
Nonequilibrium physics is one of the more propulsive

areas of today’s theoretical physics. Close to equilibrium
one can use Green-Kubo formulas and express nonequili-
brium properties in terms of equilibrium correlation func-
tions [5]. A downside to such an approach is that the
calculation of spatiotemporal correlation functions is often
very complicated. Any possible universality in their long-
time behavior would therefore be highly appreciated. For
classical fluids in one dimension such a picture has in fact
been put forward [6,7] in a form of nonlinear fluctuating
hydrodynamics [8], which describes (anomalous) fluctua-
tions around sound peaks due to nonlinearity in one-
dimensional systems that have 3 conservation laws
(momentum, energy and mass), and are in general non-
integrable. That fluctuations are indeed described by the

KPZ scaling function [9] has been verified in a number
of classical systems [10–14]. So far there has been no
observation of the KPZ universality class scaling function
in quantum systems.
In this Letter we observe the KPZ scaling functions in an

integrable quantum model that does not have any ballistic
component. Namely, we show with an unprecedented
accuracy (an order of magnitude larger than in simulations
of classical systems) that an infinite temperature spin-spin
correlation function in a paradigmatic SU(2) symmetric
quantum Heisenberg chain has a KPZ form. Such accuracy
is a result of two novelties: (i) using a linear response
formulation we show that one can calculate the equilibrium
correlation function as an expectation value in a particular
nonequilibrium state whose time evolution is easier to
calculate; (ii) we directly treat an ensemble evolution,
avoiding statistical averaging (as done in classical simu-
lations), and which is, even more importantly, structurally
stable. In addition, to discern the role played by conserved
quantities, we show that in an integrable trotterized Floquet
generalization [15] of the model, which does not conserve
the energy, the same KPZ scaling is observed. We note that
the KPZ scaling exponents have been observed in various
stochastic quantum settings, like random quantum circuits
[16,17] or noisy evolution [18].
The model.—In classical systems the KPZ scaling

function describes fluctuations around a sound mode,
whose width scales as ∼t1=z with a dynamical exponent
z ¼ 3

2
. Therefore, to observe it one has to move to a

ballistically moving reference frame, which, if the velocity
is not known analytically, can introduce numerical inac-
curacies. We are therefore going to look for KPZ physics at
infinite temperature in the one-dimensional Heisenberg
spin-1

2
chain at zero magnetization (half-filling) where

the ballistic contribution is zero due to the spin-flip
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(particle-hole) symmetry and the spin transport shows a
KPZ dynamical scaling exponent z ¼ 3

2
. Namely, such

superdiffusive magnetization transport has been observed
in a nonequilibrium steady state where the current scales as
j ∼ 1=Lz−1 [19] as well as in the spreading of an inhomo-
geneous initial state where the width scales as σ ∼ t1=z [20].
The local Hamiltonian density is

hr;rþ1 ¼ Jðsxrsxrþ1 þ syrs
y
rþ1 þ szrs

z
rþ1Þ; ð1Þ

where sαr ¼ 1
2
σαr , α ∈ fx; y; zg are spin operators (Pauli

matrices) at site r ∈ f−L=2;…; L=2 − 1g. Theoretical
explanation of the scaling exponent z ¼ 3

2
is still lacking,

but consistent derivations within assumptions of general-
ized hydrodynamics were recently given [21]. In particular,
it is possible to estimate the diffusion constant [21–23]
and prove its divergence, i.e., z < 2 [24].
Here, in order to observe precise spatiotemporal profiles

of spin and current densities, we will consider two dynami-
cal setings: continuous time evolutionUt ¼ e−iHt generated
by H ¼ PL=2−2

r¼−L=2 hr;rþ1 (where we set J ¼ 1) or discrete
time evolution with one step propagator U ¼ UeUo, with

Uo ¼ e−i
P

r
h2r−1;2r and Ue ¼ e−i

P
r
h2r;2rþ1 (where we use

J ¼ π=2, and where one also observes the superdiffusive
scaling z ¼ 3

2
[25]). Both settings are characterized by

both a global SUð2Þ symmetry and integrability.
In order to study transport we must derive the expres-

sions for the local spin current density operators for both
the continuous-time and discrete-time models. The former
is the standard spin current in the Heisenberg model
jr ¼ sxrs

y
rþ1 − syrsxrþ1, which fulfills the continuity equation

dszr=dt ¼ jr−1 − jr. The current in the discrete-time model
turns out to be slightly more complicated, with the operator
being different on odd and even sites due to the staggered
nature of the propagator U. The two currents’ densities
satisfy a pair of continuity equations

U†M2rU −M2r ¼ jo2r−1 − jo2rþ1;

U†M2r−1U −M2r−1 ¼ je2r−2 − je2r; ð2Þ

whereMr ¼ szr þ szrþ1. The simpler odd current can then be
seen to take the form

jo2r−1 ¼ 2 sinðJÞj2r−1 −
1

2
sin2ðJ=2Þðsz2r − sz2r−1Þ; ð3Þ

whereas the even current is simply the odd current
propagated by half a time step je2r ¼ U†

ejo2rUe and acts
on 4 adjacent sites.
We begin by preparing our system in a weakly polarized

domain-wall mixed initial state [20]

ρðt ¼ 0Þ ∝ ρμ ¼ ðeμszÞ⊗L=2 ⊗ ðe−μszÞ⊗L=2: ð4Þ

An example of time evolution for both models is shown in
Fig. 1, using the scaling variable ξ ¼ r=t1=z, z ¼ 3

2
. While

this choice of the initial state provides a numerically stable
and efficient way to study spin transport [20], we empha-
size that for our purposes it provides us with an efficient
way to study the infinite-temperature spin-spin correlation
function hsz0szrðtÞi, where AðtÞ≡U−tAUt and h·i≡ 2−Ltrð·Þ
denotes the infinite-temperature expectation value. We
explain that in the following section.
Linear response.—We start by expanding the initial

state (4) to linear order in μ, evolving it in time, and
writing down the expectation value for a single spin,

hszrðtÞiμ ¼ −μ
X
r0
θr0 hszrðtÞszr0 i þOðμ2Þ; ð5Þ

where we introduced h·iμ ¼ tr½ð·Þρμ�=trρμ as the expect-
ation value in the weak domain-wall initial state (4) and
θr ≡ 1ð−1Þ for r ≥ 0ð<0Þ. Accounting for the translational
invariance of the infinite-temperature expectation value
we obtain

hszr−1ðtÞiμ − hszrðtÞiμ ≈ μhszrðtÞ
X
r0
θr0 ðszr0 − szr0þ1

Þi

¼ 2μhszrðtÞsz0i − 2μhszrðtÞsz−L=2i: ð6Þ

FIG. 1. Collapse of spin profiles for the continuous-time (top)
and discrete-time (bottom) model in terms of the scaling
parameter ξ ¼ x=t2=3 shown for several times. The continuous-
time simulation was performed on a spin chain of length L ¼ 400
with bond dimension χ ¼ 400 and polarization μ ¼ 0.0017. The
discrete-time simulation was performed with L ¼ 7200, χ ¼ 256,
and μ ¼ 0.0005. The same parameters are used in other figures.
In the discrete case there is an additional Floquet even-odd
splitting whose size decays as t−1=3 (the inset).
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In the thermodynamic limit L → ∞ the second term
vanishes as there are no correlations across infinite dis-
tances, and using the cyclic property of the trace we get

hsz0ð0ÞszrðtÞi ¼ lim
μ→0

hszr−1ðtÞiμ − hszrðtÞiμ
2μ

: ð7Þ

This is our first main result. It shows that a weak domain
wall initial state can be seen as a trick that allows us to
calculate the infinite-temperature spin-spin correlation. We
next recall [8] why the left-hand side of Eq. (7) is in certain
classical systems described by the KPZ scaling function.
Kardar-Parisi-Zhang equation.—The KPZ stochastic

partial differential equation was initially suggested to
model the growth of surface hðr; tÞ through random
deposition [2]

∂th ¼ 1

2
λð∂rhÞ2 þ ν∂2

rhþ
ffiffiffi
Γ

p
ζ; ð8Þ

where ζðr; tÞ is a space-time uncorrelated noise.

Of particular interest to us will be the correlation function
Cðr; tÞ ¼ h½hðr; tÞ − hð0; 0Þ − th∂thi�2i—representing the
fluctuations of the height around the expected value—and
its second derivative 1

2
∂2
rCðr; tÞ ¼ h∂rhð0; 0Þ∂rhðr; tÞi—

describing the slope correlations (here brackets denote noise
averaging). In terms of scaling functions gðφÞ and fðφÞ
one has

gðφÞ ¼ lim
t→∞

C(ð2λ2t2Γν−1Þ−1=3φ; t)
ð1
2
λtΓ2ν−2Þ2=3 ;

fðφÞ ¼ 1

4
g00ðφÞ ∼ ∂2

rCðr; tÞ: ð9Þ

These can be obtained from the exact solution of the
polynuclear growth model [9] (a model in the KPZ
universality class), and have been tabulated with high
precision in Ref. [26]. Nonlinear fluctuating hydrodynam-
ics predicts that the correlation function of a conserved
quantity, in our case hsz0ð0ÞszrðtÞi, should be given by the
so-called KPZ scaling function fðφÞ.

FIG. 2. Scaling functions and numerical data: the left column corresponds to the continuous-time model while the right corresponds to
the discrete-time model. We show data for the spin current density hjiμ and the discrete spin derivative Δz, defined as Δz ¼
−ðhszriμ − hszr−1iμÞ in the continuous-time model and Δz ¼ − 1

4
ðhszrþ1iμ þ hszriμ − hszr−1iμ − hszr−2iμÞ in the discrete-time model. All

numerical data (yellow and red points) are appropriately scaled to the KPZ scaling functions, see Eqs. (10) and (11). The blue curves
represent the KPZ scaling functions while the green ones are the best-fitting Gaussian profiles. We note that relatively long times are
needed in order to observe the KPZ scaling, namely, t⪆50 for the continuous-time model and t⪆600 for the discrete-time model.
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Using Eq. (7) this correlation function is equal to the
magnetization difference on consecutive sites in the state
ρðtÞ ∝ UtρμU−t (see Fig. 1). However, taking the discrete
derivative increases numerical errors, so alternatively, one
can also look at the scaling form of the current
jðr; tÞ ¼ hjrðtÞiμ. In a diffusive process, the scaling forms
of both the current as well as of the magnetization differ-
ence are Gaussian. Relation between the two in a general
nondiffusive situation can be derived from the continuity
equation.
Defining a shorthand notation zðr; tÞ ¼ hszrðtÞiμ, and

φ ¼ bξ, we write an ansatz

∂rzðr; tÞ ¼
aμ

t2=3
f

�
br

t2=3

�
; ð10Þ

where we introduced two system-dependent parameters a
and b, and use continuum notation for the magnetization
difference. Taking into account the continuity equation
∂tz ¼ −∂rj, one may obtain the shape of the spin current
profile. Expressing everything in terms of gðφÞ [using per-
partes integration and Eq. (9)] we get

jðr; tÞ ¼ 2aμ

3b2t1=3
h

�
br

t2=3

�
;

hðφÞ ¼ gðφÞ − φg0ðφÞ
4

: ð11Þ

The form of jðr; tÞ, i.e., the function hðφÞ, is therefore
uniquely determined by the form of ∂rzðr; tÞ, i.e., the KPZ
function fðφÞ.
We employ extensive numerical simulations [27] using

the time-evolving block decimation algorithm [28–30] for
matrix-product density operator in order to study the time

evolution of a domain-wall-like initial state in both the
continuous and discrete time Heisenberg models. This
allows us to compute the infinite-temperature spin-spin
correlations (7) in a numerically stable way with manage-
able bond dimensions χ. Figure 2 shows the results and the
best-fitting KPZ profile for both the spin and spin current.
Because of higher numerical accuracy we only fit the data
for the current, obtaining a and b (11), which automatically
fixes the spin difference profiles (10). In order to avoid
even-odd staggering in the discrete-time model we take the
difference of two consecutive pairs of spins, rather than a
difference of two spins, and appropriately scale the con-
tinuity equation. For comparison we also show best-fitting
Gaussians. Because the KPZ scaling functions fðφÞ and
hðφÞ are rather close to Gaussians for not too large
arguments, one in fact needs at least two decades of
accuracy to be able to distinguish the two. With our
numerics we have accuracy over about three decades in
the continuous model and about four in the discrete one.
We can clearly confirm that the KPZ scaling functions
emerge at sufficiently long times.
Free parameters a and b are found to be a ¼ b ≈ 0.67,

conjectured to be 2=ð3J2=3Þ, for the continuous-time
model. Similarly, for the discrete-time model we find

FIG. 3. Plotting the ratio between the gradient of spin density
and spin current density in scaled units we can observe that the
numerical results for both models clearly do not obey Fick’s law.
Instead, they are well described by the prediction from KPZ.
Numerical data are plotted for maximum simulations times
(t ¼ 200 for continuous and t ¼ 3600 for discrete time cases).
The ratios are rescaled to 1 at φ ¼ 0.

FIG. 4. Dependence on bond dimension of the current
profiles in a domain-wall state and for continuous (t ¼ 200)
and discrete-time simulations (t ¼ 3600). Results are stable
to increasing χ and converge to the KPZ scaling functions. We
apply a moving average to the leftmost and rightmost 20% of the
data so that it is easier to see the decreasing truncation error in
the tails.
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a ¼ b ≈ 0.43; data for other values of J are well described
by the formula a ¼ b ≈ 21=3=½3j tanðJ=2Þ2=3j�.
Because the KPZ fðφÞ and hðφÞ are not Gaussian,

their ratio h=f ≡ wðbr=t2=3Þ, which appears in a relation
jðr;tÞ¼½2t1=3=ð3b2Þ�wðbr=t2=3Þ∂rzðr;tÞ, is not a constant.
Therefore, Fick’s law, even with a time-dependent diffusion
constant [31], is violated (Fig. 3).
We also show the dependence of current profiles on the

bond dimension χ used in simulations, Fig. 4. In the discrete-
time case we use slightly smaller χ; however, the acquired
times are larger (Fig. 2), as well as the sizes (L ¼ 7200 vs
L ¼ 400). As a net result the wall times of discrete model
simulations are about half as long as for a continuous one
despite about a decade better accuracy (Fig. 4).We stress that
in the best classical simulations (hard-point gas [11]) slightly
less than two decades of agreement with KPZ are achieved.
What distinguishes our quantum simulations is that we
directly work with an ensemble, encoded in the many-body
density matrix ρðtÞ, so no averaging is needed. It is an
interesting open problem how to do such efficient ensemble
simulations for classical many-body models, in particular
since for continuous variables the local function spaces are
infinitely dimensional.
Lastly, we note that taking a slightly larger domain-wall

step μ ¼ 0.02 we are even able to observe (data not shown)
second order μ2 corrections to the dynamics in the form of a
small ballistically spreading front, traveling away from the
site of the quench.
Discussion.—We have shown that the infinite temper-

ature spin-spin correlation function in the isotropic
Heisenberg spin-1

2
model obeys the Kardar-Parisi-Zhang

scaling. This is the first such observation in a deterministic
quantum model. We stress that in order to reliably show the
KPZ physics one has to look at the full distribution function
of fluctuations and not, e.g., just the dynamical scaling
exponent being z ¼ 3

2
. For instance, a related spreading

exponent 1
3
generically appears in free or dilute models; see,

e.g., Refs. [32,33].
High accuracy of over four decades was achieved by

using a trick where we simulate the melting of a slightly
polarized domain wall by directly evolving the density
operator, which is, through linear response, equivalent to
studying the equilibrium spin-spin correlation function.
Besides providing a method to efficiently probe spatio-

temporal correlation functions in quantum models, several
new directions are opened. The most important is the
question of universality. Namely, in nonlinear fluctuating
hydrodynamics, so-far verified only in classical models,
the KPZ universality is associated to the existence of 3
conservation laws. It is not clear which 3 conserved
quantities (if at all) are responsible for the observed
behavior. By studying a kicked Floquet generalization of
the isotropic Heisenberg model which does not conserve
the energy, but nevertheless shows the KPZ physics, we
show that the energy is not one of them. It remains to be

seen if the observed behavior is in any way related to
integrability and the SUð2Þ symmetry of the model.

We acknowledge useful related discussions with J.
De Nardis, E. Ilievski, M. Medenjak, and H. Spohn. The
authors acknowledge support by the European Research
Council (ERC) through the advanced Grant No. 694544–
OMNES and the Grants P1-0402 and J1-7279 of the
Slovenian Research Agency (ARRS).

[1] R. Livi and P. Politi, Nonequilibrium Statistical Physics
(Cambridge University Press, Cambridge, England, 2017).

[2] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56,
889 (1986).

[3] T. Kriecherbauer and J. Krug, J. Phys. A 43, 403001
(2010).

[4] T. Halpin-Healy and K. A. Takeuchi, J. Stat. Phys. 160, 794
(2015).

[5] R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II
(Springer, New York, 1991).

[6] H. van Beijeren, Phys. Rev. Lett. 108, 180601 (2012).
[7] H. Spohn, J. Stat. Phys. 154, 1191 (2014).
[8] H. Spohn, in Thermal Transport in Low Dimensions, edited

by S. Lepri (Springer, New York, 2016), pp. 107–158.
[9] M. Prähofer and H. Spohn, J. Stat. Phys. 115, 255

(2004).
[10] M. Kulkarni and A. Lamacraft, Phys. Rev. A 88, 021603(R)

(2013).
[11] C. B. Mendl and H. Spohn, Phys. Rev. E 90, 012147

(2014).
[12] S. G. Das, A. Dhar, K. Saito, C. B. Mendl, and H. Spohn,

Phys. Rev. E 90, 012124 (2014).
[13] A. Das, K. Damle, A. Dhar, D. A. Huse, M. Kulkarni, C. B.

Mendl, and H. Spohn, arXiv:1901.00024.
[14] A. Dhar, A. Das, M. Kulkarni, and H. Spohn (to be

published).
[15] M. Vanicat, L. Zadnik, and T. Prosen, Phys. Rev. Lett. 121,

030606 (2018).
[16] A. Nahum, J. Ruhman, S. Vijay, and J. Haah, Phys. Rev. X

7, 031016 (2017).
[17] A. Nahum, S. Vijay, and J. Haah, Phys. Rev. X 8, 021014

(2018).
[18] D. A. Rowlands and A. Lamacraft, Phys. Rev. B 98, 195125

(2018).
[19] M. Žnidarič, Phys. Rev. Lett. 106, 220601 (2011).
[20] M. Ljubotina, M. Žnidarič, and T. Prosen, Nat. Commun. 8,

16117 (2017).
[21] S. Gopalakrishnan and R. Vasseur, Phys. Rev. Lett. 122,

127202 (2019).
[22] J. De Nardis, D. Bernard, and B. Doyon, SciPost Phys. 6,

049 (2019).
[23] M. Medenjak, C. Karrasch, and T. Prosen, Phys. Rev. Lett.

119, 080602 (2017).
[24] E. Ilievski, J. De Nardis, M. Medenjak, and T. Prosen, Phys.

Rev. Lett. 121, 230602 (2018).
[25] M. Ljubotina, L. Zadnik, and T. Prosen, Phys. Rev. Lett.

122, 150605 (2019).
[26] M. Prähofer, https://www-m5.ma.tum.de/KPZ.

PHYSICAL REVIEW LETTERS 122, 210602 (2019)

210602-5

https://doi.org/10.1103/PhysRevLett.56.889
https://doi.org/10.1103/PhysRevLett.56.889
https://doi.org/10.1088/1751-8113/43/40/403001
https://doi.org/10.1088/1751-8113/43/40/403001
https://doi.org/10.1007/s10955-015-1282-1
https://doi.org/10.1007/s10955-015-1282-1
https://doi.org/10.1103/PhysRevLett.108.180601
https://doi.org/10.1007/s10955-014-0933-y
https://doi.org/10.1023/B:JOSS.0000019810.21828.fc
https://doi.org/10.1023/B:JOSS.0000019810.21828.fc
https://doi.org/10.1103/PhysRevA.88.021603
https://doi.org/10.1103/PhysRevA.88.021603
https://doi.org/10.1103/PhysRevE.90.012147
https://doi.org/10.1103/PhysRevE.90.012147
https://doi.org/10.1103/PhysRevE.90.012124
http://arXiv.org/abs/1901.00024
https://doi.org/10.1103/PhysRevLett.121.030606
https://doi.org/10.1103/PhysRevLett.121.030606
https://doi.org/10.1103/PhysRevX.7.031016
https://doi.org/10.1103/PhysRevX.7.031016
https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevX.8.021014
https://doi.org/10.1103/PhysRevB.98.195125
https://doi.org/10.1103/PhysRevB.98.195125
https://doi.org/10.1103/PhysRevLett.106.220601
https://doi.org/10.1038/ncomms16117
https://doi.org/10.1038/ncomms16117
https://doi.org/10.1103/PhysRevLett.122.127202
https://doi.org/10.1103/PhysRevLett.122.127202
https://doi.org/10.21468/SciPostPhys.6.4.049
https://doi.org/10.21468/SciPostPhys.6.4.049
https://doi.org/10.1103/PhysRevLett.119.080602
https://doi.org/10.1103/PhysRevLett.119.080602
https://doi.org/10.1103/PhysRevLett.121.230602
https://doi.org/10.1103/PhysRevLett.121.230602
https://doi.org/10.1103/PhysRevLett.122.150605
https://doi.org/10.1103/PhysRevLett.122.150605
https://www-m5.ma.tum.de/KPZ
https://www-m5.ma.tum.de/KPZ
https://www-m5.ma.tum.de/KPZ
https://www-m5.ma.tum.de/KPZ


[27] Requiring about 3 × 105 core hours of CPU time.
[28] G. Vidal, Phys. Rev. Lett. 91, 147902 (2003).
[29] G. Vidal, Phys. Rev. Lett. 93, 040502 (2004).
[30] U. Schollwöck, Ann. Phys. (Amsterdam) 326, 96 (2011).
[31] In Ref. [20] our accuracy was less than two decades due to

smaller bond dimensions χ used, hence we could not

reliably discriminate between KPZ and Gaussian scaling
functions.

[32] V. Hunyadi, Z. Racz, and L. Sasvari, Phys. Rev. E 69,
066103 (2004).

[33] V. B. Bulchandani and C. Karrasch, Phys. Rev. B 99,
121410 (2019).

PHYSICAL REVIEW LETTERS 122, 210602 (2019)

210602-6

https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/PhysRevE.69.066103
https://doi.org/10.1103/PhysRevE.69.066103
https://doi.org/10.1103/PhysRevB.99.121410
https://doi.org/10.1103/PhysRevB.99.121410

