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We show that a cyclic unitary process can extract work from the thermodynamic equilibrium state of an
engineered quantum dissipative process. Systems in the equilibrium states of these processes serve as
batteries, storing energy. The dissipative process that brings the battery to the active equilibrium state is
driven by an agent that couples the battery to thermal systems. The second law of thermodynamics imposes
a work cost for the process; however, no work is needed to keep the battery in that charged state. We
consider simple examples of these batteries and discuss situations in which the charged state has full
population inversion, in which case the extractable work is maximal, and circumstances in which the
efficiency of the process is maximal.
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Introduction.—In a dissipative process, the state of a
system converges asymptotically to an invariant or steady
state [1]. Thus, by engineering a dissipative-open-quantum-
system dynamic, a system can be driven to a given target state.
This idea has been explored in quantum computation, entan-
glement generation, and quantum sensing [2–7], thanks to the
control achieved on multipartite quantum systems [8–10].
Another application relevant to future quantum technol-

ogies is charging a quantum battery. The process of
charging a battery, i.e., storing energy in a quantum system
for later use, has been studied in various contexts. Some of
these consider dissipative processes [11,12] but do not take
the invariant state of the dynamics as the charged state.
Most of the studies focus on the isolated unitary evolution
emphasizing the role of quantum correlations between its
components [13–17]. Because in this setup the target state
is given, charging a battery by a unitary process requires
fine-tuning between the initial state of the battery and the
unitary process. This step is avoided by resetting the battery
before the charging process. Alternatively, engineering a
quantum dissipative process with a charged target state, an
agent can run a protocol without the need for any
information of the battery state and load it. The question
that arises is how efficient such a process can be.
An energetically efficient engineered process should

have no work cost to the agent if the battery has already
achieved the charged state; otherwise, he dissipates the
same currency that he wants to store. From a thermody-
namic point of view, steady states of dissipative dynamics
are either nonequilibrium states and dissipate energy or are
equilibrium states, which are dissipationless. Motivated by
these considerations and recent progress in quantum
thermodynamics [18–21], we consider the following ques-
tion: Can we engineer a dissipative process for a battery,
involving auxiliary systems in the thermal Gibbs states all
at the same temperature, such that its invariant state is an

equilibrium state where energy can be stored and then
extracted? We will show that, for systems with finite-
dimensional Hilbert space, this is indeed the case. We will
characterize the charged equilibrium state by its ergotropy
[22] and the charging process by its efficiency.
The ergotropy of a state is the maximumwork that can be

extracted from it in a unitary cyclic process [22]. States
with positive ergotropy are called “active states” and those
with vanishing, “passive states” [23,24]. Equilibrium states
reached by a relaxation process of a system in contact with
a thermal bath are passive; otherwise, a perpetuum mobile
of the second kind could be built in contradiction with the
Kelvin Planck statement of the second law [25]. However,
equilibrium states are not necessarily passive. It is possible
to engineer processes with active equilibrium states. The
second law implies that there is a work cost implementing
the protocol that drives the system to the active equilibrium
state (see Supplemental Material [26]).
When the optimal unitary cyclic process extracts the

ergotropy, the battery is left in a corresponding passive
state. We define the efficiency of the charging process by
the ratio between the ergotropy of the equilibrium state and
the work cost for the battery charging process from the
corresponding passive state. If the battery is recycled after
use, this will be the quantity of interest.
Usually, in thermodynamics, there is a tradeoff between

the resource we are interested in and the efficiency of the
process that produces it. We will show this tradeoff for the
ergotropy of active equilibrium states. In particular, we find
an engineered thermodynamic process that brings a battery
to an equilibrium state with maximal ergotropy, as well as
full population inversion but of low efficiency. A process of
maximal efficiency with low ergotropy is illustrated with a
2-qubit battery, and in the Supplemental Material [26], we
show that the efficiency generally goes to its maximal value
only if the ergotropy goes to zero.
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Thermodynamics of open quantum systems.—We con-
sider the following idealized scenario: We have a system of
interest, the battery with a Hamiltonian HS and many
copies of the same auxiliary system, each with the same
HamiltonianHA. Initially, all systems are uncorrelated, and
every copy of the auxiliary system is in the same temper-
ature Gibbs thermal state ωβðHAÞ ¼ e−βHA=Tr½e−βHA �,
where Tr denotes the total trace. They play the role of a
thermal bath. The initial state of the battery is ρSð0Þ.
Systems in the Gibbs state are easy to prepare by coupling
them weakly to the environment with inverse temperature β
(we consider units such that kB ¼ ℏ ¼ 1). To implement
the desired dissipative dynamics, an agent couples the
battery to one auxiliary system for a lapse of time τ and then
to another system for a subsequent lapse of time τ and so
on, turning on and off the interaction between the battery
and different copies of the auxiliary systems, in a repeated
interaction process [27–29]. At the nth step, the battery
interacts with the nth member of the auxiliary systems
through the time-independent potential V. This interaction
vanishes at the initial ðn − 1Þτ and final nτ times where the
interaction is off and the total Hamiltonian is simply
HS þHA. The state of the battery at time nτ reads
ρSðnτÞ ¼ TrA½ρtotðnτÞ�, where TrX denotes a partial trace
over the degrees of freedom of system X, in this case the
nth auxiliary system, and

ρtotðnτÞ ¼ UfρS½ðn − 1Þτ� ⊗ ωβðHAÞgU†; ð1Þ
where U ¼ eiτðHSþHAþVÞ is the unitary time evolution
operator for the composite system with the interaction
on. Various dissipative processes are modeled in this way,
such as streams of atoms moving across a quantum
electrodynamic cavity [30] and a boundary driven system
[31], to mention a few. Recently, the importance of the
time-dependent coupling for a proper thermodynamic
description of these processes was discussed in [28] (see
also [32]), where the work performed by the agent due to
switching on and off the interaction was taken into account.
Let us briefly analyze the thermodynamics of the

elementary process of duration τ. The properties of the
concatenated process are deduced from these (see [33,34]
for details). The energetics of the nth step is characterized
by the switching work Wn, and the heat Qn is the negative
energy change of the nth auxiliary bath system [28,29,32].
These quantities read as follows:

Wn ¼ Tr(ðHS þHAÞfρtotðnτÞ− ρS½ðn− 1Þτ�⊗ ωβðHAÞg);
ð2Þ

Qn ¼ −TrfHA½ρAðnτÞ − ωβðHAÞ�g; ð3Þ
where ρAðnτÞ ¼ TrS½ρtotðnτÞ�. Their sum is the energy
change of the battery (first law), calculated as

ΔEn ¼ Qn þWn ¼ Tr(HSfρSðnτÞ − ρS½ðn − 1Þτ�g): ð4Þ

Considering thevonNeumann entropySðρSÞ¼−Tr½ρSlnρS�,
the entropy change of the battery in the nth step can be
expressed as [35]

ΔSn ¼ Σn þ βQn; ð5Þ

where

Σn ¼ D½ρtotðnτÞjjρSðnτÞ ⊗ ωβðHAÞ� ≥ 0 ð6Þ

is the entropy production with DðajjbÞ≡ Tr½a ln a� −
Tr½a ln b� as the “relative entropy," which is nonnegative
for any density matrices a and b [1]. The inequality in
Eq. (6) corresponds to the second law.
In each time step, the battery evolves under the

completely positive trace preserving map EðρÞ ¼
TrA½Uρ ⊗ ωβðHAÞU†�, and we have characterized the
thermodynamic properties for this elementary process.
The engineered dissipative dynamics is obtained by con-
catenating this elementary process (E∘E∘ � � �).
We engineer an E with a unique invariant state, π ¼ EðπÞ,

attractive due to the contractive character of the relative
entropy under the action of the map [1]. Concatenating it a
large number of times, every initial state of the battery
will converge to π, i.e., limn→∞En½ρSð0Þ� ¼ π ∀ ρSð0Þ; the
work, heat, and entropy produced in this process ρSð0Þ → π
are the sum of the corresponding quantities, Eqs. (2), (3),
and (6), for each step.
We can distinguish two kinds of maps: maps with or

without equilibrium [33,34]. If the action of E over π
gives Σn > 0, then π is a nonequilibrium steady state
sustained by dissipated work (Wn ¼ −Qn ¼ Σn=β > 0)
performed by the agent. Conversely, if the action of the
map over π gives Σn ¼ 0, then π is an equilibrium state. In
equilibrium, the heat, work, and entropy production vanish
(Wn ¼ Qn ¼ Σn ¼ 0): no work is needed to sustain the
state π. In this case, we say that ρSð0Þ → π is an
“equilibration process.” The unitary time evolution oper-
ator U of a map with equilibrium satisfies [33]

½U;H0 þHA� ¼ 0; ð7Þ

withH0 as an operator on theHilbert space of the system, and
the equilibrium state is π ¼ e−βH0=Tr½e−βH0 � ¼ ωβðH0Þ.
Among the properties of maps with equilibrium, an

important one is that the thermodynamic quantities (2), (3),
and (6) can be written in terms of system operators only.
Heat, work, and entropy production take the form

Qn ¼ Tr(H0fρSðnτÞ − ρS½ðn − 1Þτ�g); ð8Þ

Wn ¼ Tr(ðHS −H0ÞfρSðnτÞ − ρS½ðn − 1Þτ�g); ð9Þ

Σn ¼ DfρS½ðn − 1Þτ�jjπg −D½ρSðnτÞjjπ� ≥ 0: ð10Þ
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We see that, if H0 ¼ HS, then Wn ¼ 0, and ρSð0Þ → π is a
“relaxation process.” In this case, the equilibrium state is
the passive Gibbs state. If H0 is an operator different from
HS, the equilibrium state π ¼ ωβðH0Þ may be an active
state and the equilibration process ρSð0Þ → π has a total
work cost W ¼ P

nWn ¼ TrfðHS −H0Þ½π − ρSð0Þ�g, as
follows from Eq. (9). Thus, a condition necessary to have a
charged battery in an equilibrium state is to engineer a map
E with an equilibrium state ωβðH0Þ with H0 ≠ HS.
Ergotropy.—To quantify the energy stored in a battery,

we consider the ergotropy [22]

WðρSÞ ¼ maxuTrðHS½ρS − uρSu†�Þ ð11Þ

of its state ρS. This is the maximal amount of work that can
be extracted in a unitary cyclic process, where the state

evolves unitarily with u ¼ T þe
−i
R

dt½HSþVSðtÞ� where T þ
denotes the time ordering operator, and VSðtÞ is a time-
dependent potential vanishing at the beginning and end of
the process, accounting for a cyclic external work source.
For passive [22,24] states, one has WðρSÞ ¼ 0. States are
active if WðρSÞ > 0.
If we order the eigenvalues of HS ¼

P
iEijEiihEij

(assumed to be nondegenerate for simplicity, but see
Supplemental Material [26] for the general case) in increas-
ing order, E1 < E2 < � � � < EN , and the eigenvalues of
ρS ¼

P
irijriihrij in decreasing order, r1 ≥ r2 ≥ � � � ≥ rN ,

then the ergotropy of ρS is given [22] by

WðρSÞ ¼
X

jk

rjEkðjhrjjEkij2 − δjkÞ: ð12Þ

After the optimal work extraction process, the system is left
in the corresponding passive state

σρS ¼
X

j

rjjEjihEjj: ð13Þ

The ergotropy of ρS can then be written as

WðρSÞ ¼ Tr½HSðρS − σρSÞ�: ð14Þ

Condition for active equilibrium.—Let us obtain the
conditions for an active equilibrium state ωβðH0Þ. First,
note that the equilibrium condition ½U;H0 þHA� ¼ 0 with
U ¼ e−iτðHSþHAþVÞ is satisfied if ½H0; HS� ¼ 0 and
½H0 þHA; V� ¼ 0. On the basis of common eigenvectors
of the nondegenerate HS and H0, the equilibrium state is

ωβðH0Þ ¼
XN

i¼1

e−βE
0
i

Z0

jEiihEij;

with Z0 ¼ Tr½e−βH0 �, and if a pair ðj; kÞ exists such that
ðEj − EkÞðE0

j − E0
kÞ ≤ 0, the state is active. Then, its

ergotropy is extracted by a process described by a permu-
tation unitary matrix u associated with the permutation p of
f1;…; Ng such that E0

p1
≤ � � � ≤ E0

pN
leaving the battery in

the passive state [22]

σωβðH0Þ ¼ uωβðH0Þu† ¼
XN

i¼1

e−βE
0
pi

Z0

jEiihEij: ð15Þ

Note that the total heat QR and work WR obtained by
Eqs. (8) and (9) characterizing a recharging process
σωβðH0Þ → ωβðH0Þ are

QR ¼ TrfH0½ωβðH0Þ − σωβðH0Þ�g; ð16Þ

WR ¼ TrfðHS −H0Þ½ωβðH0Þ − σωβðH0Þ�g; ð17Þ

and we see that the ergotropy of the state ωβðH0Þ, obtained
from Eqs. (14) and (15), is

W½ωβðH0Þ� ¼
XN

i¼1

ðEpi
− EiÞ

e−βE
0
pi

Z0

and it is related to WR and QR by

WR ¼ W½ωβðH0Þ� −QR:

Note thatQR ≤ 0 [see Eq. (16)] because ωβðH0Þ is the state
with minimum average H0 among states with the same
entropy (Supplemental Material [26]). It follows that
WR ≥ W½ωβðH0Þ� ≥ 0, and thus, no perpetuum mobile
of the second kind can be built. We quantify the efficiency
of the charging process by the ratio

η≡W½ωβðH0Þ�
WR

¼ 1 −
jQRj
WR

; 0 ≤ η ≤ 1:

A protocol for active equilibrium.—A particularly inter-
esting equilibrating processes with an active equilibrium
state is obtained with an interaction V ¼ P

αSα ⊗ Aα,
where the system operators Sα and auxiliary bath operators
Aα satisfy ½HS; Sα� ¼ λαSα and ½HA; Aα� ¼ λαAα. In this
case, ½V;−HS þHA� ¼ 0; i.e., we haveH0 ¼ −HS, and the
corresponding process E has the equilibrium state

ωβð−HSÞ ¼
XN

i¼1

eβEi

Zþ
jEiihEij;

with Zþ ¼ Tr½eþβHS �.
Since different Hamiltonians with the same Bohr fre-

quency spectrum fλαg are unlikely, the process should be
engineered with auxiliary baths that are copies of the
system, i.e., HS ¼ HA. With this specific interaction V,
we have a process E with a remarkable thermodynamic
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equilibrium between a system in the state ωβð−HSÞ with
copies of itself in the state ωβðHSÞ. Replacing H0 ¼ −HS

in Eqs. (16) and (17), we see that, in the recharging process,
QR ¼ WR=2 ¼ W [see Eq. (14)], and the efficiency of this
process is η ¼ 1=2.
Since E0

j ¼ −Ej, the permutation p that orders the
spectrum fE0

jg in an increasing order is i → pi ¼
N þ 1 − i. Therefore, the ergotropy of ωβð−HSÞ is
W ¼ P

iðENþ1−i − EiÞeβENþ1−i=Zþ, which is positive,
and at low temperature, β → ∞, it is the maximal
value W ¼ EN − E1.
In general,WðρSÞ is upper bounded [13] by TrfHS½ρS −

ωβ� ðHSÞ�g with β� such that SðρSÞ ¼ S½ωβ� ðHSÞ�; it is
natural to ask under what conditions W½ωβð−HSÞ� can
saturate the bound. We found that batteries with symmetric
spectrum with respect to some energy value Ē, i.e.,
ENþ1−i ¼ 2Ē − Ei, saturate the bound. Indeed, in this case,

E0
pi
¼E0

Nþ1−i¼−ENþ1−i¼Ei−2Ē and Z0 ¼
P

je
−βE0

j ¼
e2βĒZ, with Z ¼ P

je
−βEj as the canonical partition func-

tion. Thus, the passive state of ωβð−HSÞ as given by
Eq. (15) is

σωβð−HSÞ ¼
X

j

e−βE
0
Nþ1−j

Z0

jEjihEjj ¼ ωβðHSÞ;

i.e., the Gibbs state with the same temperature as the bath.
Note also, that the active state ωβð−HSÞ is, in this case, the
fully inverted population state ð1=ZÞPie

−βENþ1−i jEiihEij.
Single-qubit battery.—As an example, we consider the

battery and auxiliary systems all identical qubits (Hereafter
σx; σy; σz are Pauli matrices and σ� ¼ ðσx � iσyÞ=2); i.e.,
the battery Hamiltonian is HS ¼ ðh=2ÞσzS (with a symmet-
ric spectrum), and the auxiliary systems Hamiltonians are
HA ¼ ðh=2ÞσzA, with h > 0. The coupling between the
system and the auxiliary qubit is

V ¼ aðσþS σþA þ σ−Sσ
−
AÞ

and is such that ½σzA − σzS; V� ¼ 0, i.e., H0 ¼ −HS. The
ergotropy of the battery in the equilibrium state ωβð−HSÞ is
W ¼ h tanh βh=2, which achieves the maximal value in the
low-temperature regime βh ≫ 1. In the upper panel of
Fig. 1, we plot the populations of the ground (pg) and
excited (pe) states of the battery at each elementary step n
starting from the passive thermal state, and in the lower
panel, the thermodynamic quantities Wn, Qn, and Σn. The
population inversion is achieved, and the work cost goes to
zero when the system reaches its equilibrium state.
2-qubit battery.—With the previous protocol, we can

achieve maximal ergotropy, especially in the low-temper-
ature regime. We will now illustrate with another example
that the maximal efficiency can also be achieved but with

low ergotropy. In the Supplemental Material [26], we show
that this result is general.
We consider a 2-qubit battery with Hamiltonian

HS ¼
h
2
ðσz1 þ σz2Þ þ Jðσx1σx2 þ σy1σ

y
2Þ:

We take 2J > h > 0. If we consider the process E obtained
by coupling auxiliary systems of Hamiltonian HA ¼
ðh=2ÞσzA to the battery of Hamiltonian HS with

V ¼ σxAσ
x
1 þ σyAσ

y
1;

the equilibrium state is found to be ωβðH0Þ with
H0 ¼ ðh=2Þðσz1 þ σz2Þ, whose ergotropy is

W ¼ ð2J − hÞ sinh βh
1þ cosh βh

:

Thework done in the dissipative process σωβðH0Þ → ωβðH0Þ
that recharges the battery is

WR ¼ 2J
sinh βh

1þ cosh βh
:

We see that the efficiency η ¼ W=WR → 1 if h → 0
for all β, yet, to have a finite ergotropy, one would need
β ∼Oðh−1Þ. Note that if βh ≫ 1, but h is small, W → 2J,
and for this system the state of maximum ergotropy is the

2 4 6 8 10
n

0.2

0.4

0.6

0.8

pe

pg

2 4 6 8 10
n

0.2

0.2

0.4

0.6
Wn

Qn

n

FIG. 1. Population inversion in the equilibration process for the
single-qubit battery. (Upper) Populations of the ground (pg) and
excited (pe) states for each iteration step n. (Lower) Work (Wn),
heat flow (Qn), and entropy production (Σn) for each step n. The
initial state of the battery is a thermal state, that is, an identical
state to that of the auxiliary baths. We consider for these plots
τ ¼ 0.1, a ¼ ffiffiffiffiffi

10
p

, h ¼ 1.5, and β ¼ 1. The continuous lines are
a guide for the eyes.
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pure state of maximal eigenenergy for which W ¼ 4J.
Details can be found in the Supplemental Material [26].
Conclusions.—In this Letter, we have explored the role

of active equilibrium states in the context of charging a
battery. Active equilibrium states have been used in
thermodynamic processes involving squeezing [36].
Indeed, it has been shown [37] that, for systems with a
quadratic Hamiltonian, bosonic reservoirs in squeezed
thermal states can act as equilibrium reservoirs, exchanging
energy and squeezing (asymmetry between position and
momentum uncertainties) such that these two noncommut-
ing quantities are globally conserved and making any initial
state of the system relax to an active equilibrium state in a
generalized Gibbs state, the squeezed thermal state. We
have shown here that, by engineering the coupling between
a system, the battery, and auxiliary systems prepared in
Gibbs thermal state, a bath, an agent can drive the system to
an active equilibrium state. This engineering requires one to
find a unitary evolution with a single globally conserved
quantity, see Eq. (7). Wewere able to evaluate the work cost
for the agent due to the coupling and decoupling between
the battery and auxiliary thermal systems. As a conse-
quence, work can be extracted from the equilibrium state,
but no perpetuum mobile of the second kind could be built.
The notable aspect of our result is that, because the charged
state is an equilibrium state, the agent does not waste
energy (work) once the battery is in the equilibrium state.
One can thus consider that continuing the process once the
battery is charged is a convenient way of protecting the
charged battery. If a perturbation changes its state, the
process will charge the battery again, spending energy only
when this happens.
We have characterized the activity of these equilibrium

states by their ergotropy and the efficiency of the charging
process; furthermore,we showed that, in the low-temperature
limit, either maximal ergotropy or efficiency could be
obtained. We observe a tradeoff between ergotropy and
the efficiency η of the process that produces it. Interestingly,
we have found a dissipative process in which the equilibrium
state of the system is eβH=Zþ, while the environment is in the
state e−βH=Z. For this process, it is important that the
Hamiltonian of the battery has a finite spectrum, but other
processes for other charged states will not require that.
Finally, since all spin-spin 1=2 interactions are possible to

implement with trapped ions [38], the predictions for the
qubit battery is testablewith current experimental techniques.
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