
 

Criticality between Cortical States

Antonio J. Fontenele,1,* Nivaldo A. P. de Vasconcelos,1,2,3,4,* Thaís Feliciano,1 Leandro A. A. Aguiar,1,5

Carina Soares-Cunha,3,4 Bárbara Coimbra,3,4 Leonardo Dalla Porta,1,6 Sidarta Ribeiro,7

Ana João Rodrigues,3,4 Nuno Sousa,3,4 Pedro V. Carelli,1,† and Mauro Copelli1,‡
1Physics Department, Federal University of Pernambuco (UFPE), Recife, PE 50670-901, Brazil

2Department of Biomedical Engineering, Federal University of Pernambuco, Recife, PE 50670-901, Brazil
3Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal

4ICVS/3Bs—PT Government Associate Laboratory, 4806-909, Braga/Guimarães, Portugal
5Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco (UFRPE),

Recife, PE 52171-900, Brazil
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Since the first measurements of neuronal avalanches, the critical brain hypothesis has gained traction.
However, if the brain is critical, what is the phase transition? For several decades, it has been known that the
cerebral cortex operates in a diversity of regimes, ranging from highly synchronous states (with higher
spiking variability) to desynchronized states (with lower spiking variability). Here, using both new and
publicly available data, we test independent signatures of criticality and show that a phase transition occurs
in an intermediate value of spiking variability, in both anesthetized and freely moving animals. The critical
exponents point to a universality class different from mean-field directed percolation. Importantly, as the
cortex hovers around this critical point, the avalanche exponents follow a linear relation that encompasses
previous experimental results from different setups and is reproduced by a model.

DOI: 10.1103/PhysRevLett.122.208101

It is well established that cortical activity exhibits a rich
repertoire of dynamical states [1–3]. This knowledge,
initially based on electroencephalographic recordings, later
reached the spiking activity of large neuronal populations
of both anesthetized and freely moving animals [4,5], in
which the variability level has been used as a proxy of the
cortical state [5–8]. However, only recently has the diver-
sity of cortical states been systematically considered in
studies of criticality [9,10].
In the first results that fueled the critical brain hypothesis

[11], Beggs and Plenz observed local field potential (LFP)
neuronal avalanches in vitro with power-law size distribu-
tions PðsÞ ∼ s−1.5 [12]. The exponent coincides with that of
a critical branching process, which has driven significant
efforts towards the idea that the brain hovers around a
critical point belonging to the mean-field-directed perco-
lation (MF-DP) universality class [13].
Findings for spiking data have, however, raised some

controversy: on one hand, power-law size distributions
were found during strong, slow LFP oscillations, under
ketamine-xylazine [9] and isoflurane [10] anesthesia. On
the other hand, long-range time correlations (another
statistical signature of criticality [14]) were observed during
fast LFP oscillations in freely behaving rats, but not under
ketamine-xylazine anesthesia [9]. Those results lead to a
conundrum, where the signatures of a critical state might be

dependent on the level of synchronization, thus challenging
the whole picture of directed percolation, which involves
no oscillations whatsoever, and where the system goes from
an absorbing to an active state.
Here we show that the signatures of criticality in vivo

vary continuously across the cortical states, and that scaling
relations predicted by the theory of critical phenomena can
be used to determine a well-defined critical point. We
quantified the variety of cortical states [4,5] in terms of the
coefficient of variation (CV) [5,6] of the summed pop-
ulation activity in the primary visual cortex (V1) of
urethane-anesthetized rats [8] (Fig. S1 [15]). We recorded
a total of 1628 units [Fig. 1(a), Tables S1 and S2 [15] ] in
deep layers of V1 (n ¼ 8 rats), under spontaneous activity,
during long periods (≥ 200 min). We employed high-
count sites silicon probes (64=32 channels, see
Supplemental Material [15]) to record spiking activity of
large neuronal populations. We then extended our analyses
to publicly available datasets comprising V1 action poten-
tials from one sufentanil-anesthetized monkey [22] and
from freely moving nonanesthetized mice [23] (see details
in the Supplemental Material [15]).
We calculated CV, which is correlated with the Fano

factor (Fig. S4 [15]), within nonoverlapping 10 s windows.
In that timescale, CV typically changes rapidly [4–6,8]
[Fig. 1(b)]. Within each of these windows, for increasing
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values of CV, spiking activity ranges from completely
desynchronized to a strongly synchronized state [Fig. 1(c)].
In what follows, we sort results according to CV values
and average over consecutive percentiles to obtain hCVi as
a representative of a given spiking variability level (Fig. S1
[15]). Different spiking correlation structures underlie
those different regimes. Both mean and standard deviation
of pairwise spiking correlations increase from the
desynchronized state to the strongly synchronized state
[Fig. 1(d), p ≪ 0.01, rank sum test].
By dividing each 10 s window in short time bins

(Δt ∼ 2–4 ms), spike avalanches are defined by the spa-
tiotemporal spiking patterns between silent bins [Fig. 1(e)].
We used the standard definition of Δt as the average

interspike interval [9,12]. Since the firing rates decrease
monotonously with increasing hCVi [24] (Fig. S5 [15]), for
each 10 s window a different Δt was calculated. The size S
and lifetime T of an avalanche are, respectively, given by
the total numbers of spikes and bins within each event.
Even when bins are adjusted by firing rates, the statistics

of avalanche size and lifetime differ across the range of
hCVi values. For instance, sampling the lower, intermedi-
ate, and upper portions of the hCVi range, the degree to
which the distributions of avalanche size and lifetime can
be fitted by power laws (Supplemental Material [15])

PðSÞ ∼ S−τ; ð1Þ
PðTÞ ∼ T−τt ð2Þ

(a)

(c)

(e) (f) (g) (h)

(d)

(b)

FIG. 1. Statistical properties of cortical dynamics along different levels of spiking variability. (a) Position of the six shanks (colored
dots) in the primary visual cortex (V1). (Bottom right) Samples of spike waveforms. (b) (Left) Coefficient of variation (CV) of the
spiking activity in V1 (see also Supplemental Material, Figs. S2 and S3 [15]). Each point was calculated for a 10-s-long nonoverlapping
time period; symbols (star, pentagon and diamond) indicate the level of spiking variability of three representative examples (low,
intermediate, and high, respectively: hCVi ¼ 0.38, 1.48, and 2.86). (Right) CV histogram of a single animal. The vertical color bar is
used as a reference for CV scale throughout the Letter. (c) Samples of 4-s-long spiking activity across the three levels of spiking
variability depicted in (b). (Top) Population rate smoothed by a Gaussian kernel σ ¼ 0.1 s. (Bottom) Raster plot: single- and multi-units
(SUA ¼ 138 and MUA ¼ 153) with white and gray backgrounds, respectively. (d) Histogram of pairwise spiking correlation along low,
intermediate, and high levels [same symbols as in (c)], where mean and standard deviation are 0.028� 0.069, 0.117� 0.115, and
0.224� 0.165, respectively (see Supplemental Material [15]). (e) The data are divided in nonoverlapping time bins, Δt (see
Supplemental Material [15]). Population spikes preceded and followed by silences define a spike avalanche (gray backgrounds). The
number of spikes defines the avalanche size, whereas the number of bins define its lifetime. (f),(g) Distributions of size and lifetime of
spiking avalanches, PðSÞ and PðTÞ, respectively, during the dynamical states described in (d). Filled symbols indicate the range to which
we fitted a power law in both cases. Solid lines show the exponents of the MF-DP universality class. (h) Relative goodness-of-fit test of
the size distribution according to the Akaike Information Criterion (group data B, see Supplemental Material [15]). Positive (negative)
values indicate power-law (log-normal) behavior.
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varies considerably [Figs. 1(f) and 1(g)]. In particular, the
exponents τ and τt do not necessarily agree with those
of MF-DP. According to the Akaike criterion [Fig. 1(h),
Supplemental Material [15]), power laws cease to be the
best fitting distribution for sufficiently low hCVi (and, if
the data are shuffled, for any hCVi, see Figs. S6 and S7
[15]). Subsequently, we refine our analysis by checking the
consistency of scaling relations across hCVi values.
The theory of critical phenomena predicts that, if Eqs. (1)

and (2) hold at a critical point, then so does

hSiðTÞ ∼ T
1
σνz; ð3Þ

where 1=ðσνzÞ is a combination of critical exponents
[25,26]. Our data are clearly consistent with Eq. (3),
with the exponent 1=ðσνzÞ depending on the spiking
variability hCVi [Fig. 2(c)]. The same exponent governs
avalanche shape collapse [25,27], which we also observe
(Fig. S8 [15]).

The scaling relation of Eq. (3), however, is known to
hold even far from criticality [25], so it can hardly be
considered a sufficient signature in itself. In fact, Touboul
and Destexhe claim that Eqs. (1)–(3) can be obtained in
systems that are not critical [30]. However, if the system is
indeed critical, another scaling relation connecting 1=ðσνzÞ
with τ and τt is expected to hold, namely [25],

τt − 1

τ − 1
¼ 1

σνz
: ð4Þ

The above relation has not been observed by Touboul and
Destexhe away from criticality and is therefore considered
a much stricter criterion for criticality [30]. Since both sides
of the above relation can be independently evaluated, we
tested whether they equal each other as the brain sponta-
neously traverses the different levels of spiking variability.
We verified that Eq. (4) clearly holds for each animal
(n ¼ 8) and, strikingly, the crossing between the left and

(a) (b) (c) (d)

(e) (f) (g)

FIG. 2. Signatures of criticality as a function of the cortical spiking variability. (a) Scaling relation across the variability spectrum
per animal (five urethane-anesthetized rats), where open (filled) symbols correspond to the left (right) side of Eq. (4). Each animal is
represented by a different symbol type. (b) Group data for the rat experiments shown in (a). (b),(e) Solid thin (solid thick) line
corresponds to the left (right) side of Eq. (4). The shadow around each curve represents its standard deviation. The dashed curve
represents the relative residence time across CV values. Gray stripe in (b) represents the critical value of hCVi� ¼ 1.4� 0.2, where
Eq. (4) holds, considering the standard deviations. (c) Power-law relation between size and lifetime of spike avalanches across
different levels of spiking variability [same symbols as Fig. 1(b)]. (d) Group data of the DFA exponent α as a function of the
difference between the scaling properties in (b). (Inset) Root-mean-squared fluctuation F of the detrended time series of the firing
rates vs window width w, across different levels of spiking variability [symbols as in (c)]. (e) Group data of scaling relation [Eq. (4)]
across the variability spectrum for freely moving mice (n ¼ 14, NB ¼ 10 and ΔT ¼ 25 ms). Lines as in (b), with hCVi� ¼ 1.1� 0.2.
(f) Scaling relation across the variability spectrum for one anesthetized monkey. Lines as in (b). (g) Linear relation between the size
and lifetime critical exponents across animals. We also plot other experimental results from the ex vivo visual cortex of the turtle
[28], cortical slices of the rat brain [25], freely moving mice [23], and one anesthetized monkey [22], as well as those obtained by a
model [15,29]. Lower (upper) hatched regions represent the values (within standard deviations) of ðτ; τtÞ at hCVi� for the urethane-
anesthetized rats (freely moving mice).
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right sides of the equation occurs around the same hCVi
value [Fig. 2(a)]. Results are robust with respect to changes
in the timescale used to estimate firing rates and the number
of 10 s blocks defining the resolution of the CV percentiles
(Figs. S9–S11 [15]).
Averaging over animals [Fig. 2(b)], we obtain a critical

value of spiking variability hCVi� ¼ 1.4� 0.2, therefore,
far from the extremes of the variability spectrum.
Moreover, when we compute the residence time distribu-
tion along this spectrum, we observe that the system spends
most of the time close to the critical region [Fig. 2(b)]. This
is consistent with a scenario in which the urethanized brain
hovers around a critical point [31]. We found similar results
in a different strain (nonalbino rats, Long Evans, n ¼ 3),
using a 20% lower spatial resolution (8 sites per shank) (see
the Supplemental Material and Figs. S7 and S12 [15]).
Another feature of systems at the critical point is self-

affinity of time series over different timescales, as assessed
by detrended fluctuation analysis (DFA) [14,32]. For our
data, the root-mean-squared fluctuation F scales with the
length of the time window w as F ∼ wα (see Supplemental
Material [15]), and α also depends on hCVi [Figs. 2(d)
(inset) and S13 [15] ]. There is a remarkable convergence
between these two independent signatures of criticality. We
found α ≈ 1, indicating long-range time correlations and
1=f noise, at the same critical value of hCVi that was
independently inferred by the scaling relation in Eq. (4)
[Fig. 2(d)].
If the dynamics of the sensory cortex indeed hovers

around a critical point, then what are the avalanche
exponents at criticality? At the critical value hCVi�, we
obtained the exponents τ ¼ 1.52� 0.09 and τt ¼ 1.7� 0.1
for the anesthetized rats [Figs. S14(a) and S14(b) [15] ].
Note that, while the value of τ coincides with the critical
exponent of MF-DP [33] for the rat preparation, the value
of τt does not. The disagreement with the MF-DP univer-
sality class, regardless of the hCVi value, is clearly seen
when results are parametrically plotted in the ðτ; τtÞ plane
[Fig. 2(g)]. We find, moreover, that other results in the
literature (from diverse experimental recordings such as the
ex vivo visual cortex of the turtle [28] and in vitro cultured
slices of the rat cortex [25]) lie close to the linear spread of
the avalanche exponents of our data [Fig. 2(g)].
Such a coincidence suggests a common underlying

mechanism. A similar linear trend is found in the critical
oscillations (CROS) [34] model with excitatory and inhibi-
tory neurons, in which a transition occurs at the onset of
collective oscillations, as recently described in Ref. [29]
(see Supplemental Material [15] for details). A transition
region in parameter space was found, where different
signatures of scale-free dynamics emerge concomitantly
with a peak in the power spectrum, namely, size and
lifetime of avalanches are best fit by (truncated) power
laws, and DFA exponents are larger than 0.5 [29]. When
tuned within that transition region, the model successfully

mimics our experimental results, yielding a linear spread of
continuously varying exponents in the ðτ; τtÞ plane with a
nontrivial slope [29] [Fig. 2(g)]. This supports a scenario
in which the transition governing brain dynamics is not
between absorbing and active phases, but rather between
active and oscillating phases [34–36]. In the ðα; τÞ and
ðα; τtÞ planes, the CROS model [29] also approaches our
experimental results [Figs. S14(c) and S14(d) [15] ].
To address the generality of our results, we extended our

analysis to an independent sample of publicly available
spiking data from freely moving mice [23]. The rationale
for this investigation was to assess whether the many
signatures of criticality detected under anesthesia would
also be observed in nonanesthetized animals. Such paral-
lelism, if true, would greatly extend the biological signifi-
cance of the phenomena. Figure 2(e) with group results
(n ¼ 14) shows that the scaling relation of Eq. (4) is indeed
observed also in this more naturalistic setting [animal to
animal results are detailed in Fig. S9(a) [15] ]. Note that
the range of hCVi values is shifted to smaller values for
the mice and so is the critical value hCVi� ¼ 1.1� 0.2.
At the critical point, we obtained τ ¼ 1.66� 0.07 and
τt ¼ 1.9� 0.1. Despite these differences, the spread of
exponents in the ðτ; τtÞ plane falls into the same linear
relation of the anesthetized rat data [Fig. 2(g)].
To further check the robustness of our results across

animal species, beyond rodents and irrespective of the
anesthetic employed, we also analyzed a short (∼30 min)
spiking time series of one sufentanil-anesthetized macaque
monkey [22]. Despite the smaller number of points in the
hCVi axis, the scaling relation of Eq. (4) was also observed,
with τ ¼ 1.77� 0.005 and τt ¼ 1.99� 0.007 at the critical
point [Fig. 2(f)]. These values are also consistent with the
other experimental results in the ðτ; τtÞ plane.
In conclusion, we found consistent markers of criticality

in the spiking activity of the mammalian primary visual
cortex, in both anesthetized (rats and monkey) and freely
moving animals (mice). The critical point is neither at the
synchronous nor the asynchronous ends of the spectrum,
but rather at an intermediate value hCVi� of the coefficient
of variation. Those results hold for group data and across
different experimental conditions.
Importantly, our results are incompatible with a directed-

percolationlike phase transition between a quiescent and
an active state, a paradigm which has been a de facto
theoretical workhorse of the field for over a decade [13].
We found a linear relationship between τ and τt across
cortical states that encompasses results from other exper-
imental setups and is reproduced by the CROS model.
These results open new theoretical as well as exper-

imental avenues. On the one hand, they can guide further
development of models for criticality in the brain: the
CROS model does not yet provide a critical point [29] nor
can it account for the differences between anesthetized and
nonanesthetized results. What is the minimal model that
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can reproduce these results? On the other hand, the
underlying mechanisms (neuromodulatory and other) that
tune the cortex to criticality remain to be investigated. Since
the critical point and the exponents change from urethan-
ized to nonanesthetized brains, could it also be a biomarker
of diseases? Moreover, it would be interesting to reanalyze
our data to check how other quantifiers for cortical
dynamics change with CVand relate to the phase transition
we have found, such as the branching ratio (with the full set
of techniques to account for subsampling issues [37,38]) or
Kuramoto-like order parameters to assess synchrony [39].
The present results highlight the relevance of intermedi-

ate levels of spiking variability for state-dependent process-
ing in the primary sensory cortex. We propose that, if
the cortex demands both extreme modes of operation
(synchronized and desynchronized) for different functions
[40], it might be advantageous to self-organize near and
hover over the critical point between them.
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