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We develop a double mean-field theory for charged macrogels immersed in electrolyte solutions in the
spirit of the cell model approach. We first demonstrate that the equilibrium sampling of a single explicit
coarse-grained charged polymer in a cell yields accurate predictions of the swelling equilibrium if the
geometry is suitably chosen and all pressure contributions have been incorporated accurately. We then
replace the explicit flexible chain by a suitably modeled penetrable charged rod that allows us to compute
all pressure terms within the Poisson-Boltzmann approximation. This model, albeit computationally cheap,
yields excellent predictions of swelling equilibria under varying chain length, polymer charge fraction, and
external reservoir salt concentrations when compared to coarse-grained molecular dynamics simulations of
charged macrogels. We present an extension of the model to the experimentally relevant cases of pH-
sensitive gels.
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Polyelectrolyte gels consist of cross-linked charged
polymers (polyelectrolytes) that can be synthesized with
various topologies and are produced in sizes ranging from
nanometers (nanogels) up to centimeters (macrogels) [1,2].
They show a large, reversible uptake of water that is
exploited in numerous daily-life products, such as in
superabsorbers, cosmetics, pharmaceuticals [3–5], agricul-
ture [6,7], or quite recently water desalination [8,9].
Tailoring polyelectrolyte gels to their applications requires
a sufficiently accurate prediction of their swelling capabil-
ities and elastic responses, a task that still goes beyond
analytical approaches [10–18]. So far only all-atom sim-
ulations of short single chains in the bulk (not of whole
hydrogels) with explicit water have been performed [19–
22]. On the other hand, coarse-grained polyelectrolyte
network models have demonstrated their ability to amend
analytical approaches, showing that structural microscopic
details can have noticeable effects on the macroscopic
properties such as the swelling [23–32]. Macroscopic gels
with monodisperse chain length can be simulated with
microscopic detail using molecular dynamics (MD) sim-
ulations with periodic boundary conditions (PBCs)
(cf. periodic gel model) where a unit gel section is
connected periodically to yield an infinite gel without
boundaries. However, even MD simulations of periodic
gels remain computationally very expensive due to the
many particles and the slow relaxation times of the involved
polymers. Thus, the development of computationally effi-
cient mean-field models capable of predicting swelling
equilibria have been of scientific interest in the last years
[15,31–33]. First ideas of using a Poisson-Boltzmann (PB)
cell model under tension were put forward by Mann for
salt-free gels, with moderate success [33].

About 60 years ago, Katchalsky and Michaeli [11]
suggested a free energy model that has recently been
shown to predict swelling equilibria reasonably well [31]
when compared to MD simulations of charged bead-spring
gels. This model has been applied to explore a wide
parameter space in search of optimal desalination con-
ditions [9]. However, the Katchalsky model fails [31] for
Manning parameters ξ ¼ λB=hdi > 1 [34], where λB
denotes the Bjerrum length, and hdi the average distance
between polymer backbone charges. This is presumably
due to the usage of the Debye-Hückel approximation.
In this Letter, we describe two successive mean-field

approaches to render the determination of swelling equi-
libria of polyelectrolytes accurately and efficiently. Figure 1
displays our construction scheme of the two different
models. First, we describe a single-chain MD cell model,
which reproduces results similar to those obtained from
expensive MD simulations of multiple cross-linked chains.
This reduces the many-body problem of the macroscopic
gel to one of computing the pressure exerted within a cell
containing a single polyelectrolyte chain under varying
environmental conditions. The single-chain cell model can
thus be viewed as a mean-field attempt to factorize the
many-body partition function of the macrogel into a
product state of suitable identical subunits [35]. We then
show that the single-chain cell model can further be
simplified in a second mean-field step using a PB descrip-
tion of the chain with appropriate boundary conditions. The
PB cell description has been successful in describing a
variety of polyelectrolyte phenomena [36–41] and is here
applied to macroscopic polyelectrolyte gels for the first
time. The quality of our two mean-field models is gauged
by comparing them to 60 data points for the swelling
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equilibrium of periodic monodisperse gel MD simulations
obtained within a wide range of system parameters. We
want to emphasize that none of our models assumes a
specific stretching state of the chains: they are constructed
to incorporate the main physical effects that happen during
stretching (at high chain extensions) and compression of a
polyelectrolyte gel (at low chain extensions).
Finally, we generalize the PB cell model to account for

the effect of weak groups along the chain backbone. From
this we can efficiently predict swelling equilibria for the
experimentally relevant cases of weak polyelectrolyte gels.
We specifically compare our results to MD data for the

periodic gel model obtained by Košovan et al. [31] where a
continuum solvent is used with standard charged bead-
spring polymers connected in a diamond lattice as in the
work of Ref. [27] together with explicit salt and counter-
ions. Here a perfect tetrafunctional gel is described by the
chain length N and the monomers charge fraction f. This
explicit particle-based model uses monodisperse chain
lengths, which is in contrast to the heterogeneity observed
in a wide variety of synthesized gels [42]. It would be
computationally very costly to introduce chain length
heterogeneity into this model since it would require
simulating a much larger representative volume element.
However, these periodic gel simulations of a monodisperse
gel are sufficient to test the validity of our two consecutive
mean-field approaches.
All MD simulations (namely the periodic gel and the

single-chain model described later) are performed with
PBCs using the simulation package ESPRESSO [43,44]. All
particles interact via WCA interactions [45,46]. Monomers
are connected via FENE bonds (including the ends of the
single periodic chain) with Kremer-Grest parameters [47].
We employ the Langevin thermostat [48], and all electro-
static interactions between particles are calculated with the
P3M method [49] tuned to an accuracy in the root mean
squared error of the electrostatic force of at least 10−3 in
electrostatic simulation units [50].
In addition, salt ion pair exchanges between the simu-

lation volume and an external reservoir are performed using
grand canonical Monte Carlo moves [48]. The equilibrium
pressure inside the gel and the electrochemical potentials
of all i species balance out with that of the reservoir:
PinðVeqÞ ¼ Pres and μgeli ¼ μresi , respectively. The simula-
tions are performed at different imposed volumes and the
internal pressure is measured after chemical equilibrium is
reached. The reservoir pressure is approximated by the
ideal gas expression Pres ¼

P
i kBTc

b
i , with the Boltzmann

constant kB, temperature T, and bulk ion concentrations cbi ,
which are chosen such that the bulk is electroneutral.
The above approach requires multiple simulations at

different imposed volumes until the condition PinðVeqÞ ¼
Pres can be narrowed down to a satisfactory small interval.
The equilbrium volume is found at the intersection of
PinðVeqÞ and Pres by using linear interpolation. The error

bar is given by the width of the interval. Under equilibrium
conditions, the end-to-end distance Re is equal to the
equilibrium chain extension Req.
The first model for complexity reduction is the mean-

field single-chain model. Like in the cylindrical cell model
used to describe solutions of polyelectrolytes [38,40,41],
we propose constructing the many-body partition function
of a periodic gel as a suitable product of individual
cylindrical cells containing a single polyelectrolyte chain
with added salt. Since the main physical principle is the
balance between the polyelectrolyte chain tension and the
remaining pressure contributions (mainly the ionic ones),
these cylindrical cells have an axial length chosen such as
to represent the polymer chain extension between gel cross-
links. Like in the periodic gel model, we perform MD
simulations for a single chain in cylindrical confinement
allowing explicit salt ion pairs to enter the cell volume and
reach chemical equilibrium with an external reservoir [48].
For a perfect affine compression of a (fully stretched)
tetrafunctional gel (built in a diamond cubic lattice) the
volume per chain is given by Vchain ¼ R3

e=A, with the
geometrical prefactor A ¼ ffiffiffiffiffi

27
p

=4 [31]. Using the volume
of the cylindrical cell as the volume per chain, we arrive at a
constant aspect ratio Rout=Re ¼ 1=

ffiffiffiffiffiffi
πA

p
≈ 0.49, where Rout

denotes the radius of the cylindrical cell, see Fig. 1. This is
in contrast to the deformation of a pure isolated chain,
which does not occupy a cylindrical volume of constant
aspect ratio upon a stretching deformation. The simulation
volume is completely defined by the length of the cylinder,
or equivalently Re. Note that the single chain under
confinement sees its images in the axial direction (due
to PBCs), which in a simplified way mimics the electro-
static environment in a gel where the end of a single chain
sees the next chain. In the single chain MD simulations the

(a)

(b)

(c)

FIG. 1. A schematic of the (a) macroscopic gel, (b) single-
chain, and (c) PB model of a macroscopic gel in contact with a
reservoir. The plot sketches a typical radial density profile.
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cylinder height is RE þ b (where b ≈ 0.966σ is the average
bond length) in order to be able to satisfy periodic boundary
conditions. For cylindrical geometries under affine com-
pression, the pressure inside the volume is given by [41,51]:

Pin ¼
1

3
Pcap þ

2

3
Pside; ð1Þ

where the total internal pressure Pin is split into the two
contributions from, Pcap, the cylinder end caps, and Pside,
the side wall. The latter is mainly dominated by collisions
between mobile ions and the boundary whereas the cap
pressure is given as the ðz; zÞ component of the pressure
tensor Pcap ¼ Πðz;zÞ:

Πðz;zÞ ¼
P

imiv
ðzÞ
i vðzÞi

V
þ
P

j>iF⃗
ðzÞ
ij · r⃗ðzÞij

V
þ ΠCoulomb

ðz;zÞ : ð2Þ

Here V ¼ πR2
outRe is the effective available volume,mi (v⃗i)

is the mass (velocity) of particle i, and F⃗ij (r⃗ij) is the force
(connection vector) between particles i and j. The last term
represents the Coulomb contribution to the pressure tensor
and is calculated according to Ref. [52]. The side con-
tribution Pside is obtained directly by measuring the average
normal force on the constraint and dividing by its area.
Having expressions for Pcap, Pside, and Pres, we determine
the equilibrium volume using PinðVeqÞ ¼ Pres. To check
the accuracy of the single-chain cell model, we compare
our equilibrium chain extensions to the ones obtained via
the periodic-cell model, cf. Fig. 2 of Ref. [31]. We will
discuss the results after describing the second mean-field
approximation.
Since the single-chain cell model uses a cylindrical cell,

a further reduction of the model complexity is to construct
an adapted PB description of the polyelectrolyte in the salt
solution. As before, the PB model uses a semi-infinite
cylinder having an external radius Rout and conceptual
length Re, as shown in Fig. 1. The electrostatics for an
infinite rod is solved, again mimicking in a simplified way
the electrostatic situation in a gel. We also depict how the
explicit single chain is now modeled as a penetrable
concentric charged rod of radius a, characterized by a
prescribed charge distribution.
The radius a of the charged rod is chosen such that the

polymer density implies the same average distance from the
end-to-end vector as obtained from single-chain MD
simulations. This amounts to finding the length scale
equivalent to the tensional blob size. The numerical value
is obtained via fitting a second degree polynomial
aMDðReÞ ¼ NσfC1½Re=ðNσÞ�2 þ C2½Re=ðNσÞ� þ C3g,
with C1 ¼ −0.17, C2 ¼ 0.14, and C3 ¼ 0.03 based on our

single-chain MD data. Enforcing hri ¼ R
V pðr⃗ÞrdV¼! aMD,

we obtain for the rectangular distribution function
a ¼ 3=2aMD. The monomer charges thus have a probability
density pðr⃗Þ¼NH½−ðr−aÞ�, where HðxÞ is the Heaviside

function and N a normalization such that pðr⃗Þ is a
probability density. For a strong polyelectrolyte, the
charge is homogeneously distributed in the rod with
ρfðr⃗Þ ¼ −Nfe0pðr⃗Þ.
The Poisson equation describes the electrostatic inter-

action and ionic distribution in the system:

∇2ψ ¼ −
1

ϵ0ϵr

�X
i

qiciðr⃗Þ þ ρfðr⃗Þ
�
: ð3Þ

The number densities of the ions ci are related to the charge
densities via ρiðr⃗Þ ¼ qiciðr⃗Þ given by standard PB theory
(with the bulk potential ψb ¼ 0):

ciðrÞ ¼ cbi exp

�
−
qiψðrÞ
kBT

�
: ð4Þ

Water is modeled implicitly via a relative dielectric per-
mittivity of ϵr ≈ 80.
The PB pressure inside the cell Pin has two contributions.

(i) The combined ideal and Maxwell pressure [53] which
yields

Pside ¼ kBTcðRoutÞ; ð5Þ

Pions
cap ¼ kBThciz þ

ϵ0ϵr
2

hE2
riz; ð6Þ

where Er ¼ −∂rΨðrÞ is the electric field in radial direction
and hAiz ¼

R
2π
0

R Rout
0 rAðrÞdr=ðπR2

outÞ denotes the average
over all radii. And (ii) the stretching pressure Pstr

cap (acting
only on the cap) which we define to be the pressure due to
confinement Pconf (in the spirit of Ref. [[54], p. 115]) minus
the tensile stress σchain of the chain in order to have a finite
extension for a neutral polymer gel:

Pstr
capðReÞ¼Pconf−σchain

¼ 1

πR2
out

�
kBT
b

R3
0

R3
e
L−1

�
R0

Rmax

�
−
kBT
b

L−1
�

Re

Rmax

��
;

ð7Þ

where L−1 is the inverse Langevin function. The stretching
pressure is constructed such that Pstr

capðR0Þ ¼ 0, where R0 ¼
1.2bN0.588 is the average end-to-end distance of an uncon-
fined neutral chain [31]. For a neutral gel, only the
stretching pressure will determine the swelling equilibrium
PinðReqÞ ¼ Pres, which is found at Req ¼ R0. The added
confinement pressure dominates at low extensions.
Therefore the pressure inside the gel can be obtained

via Eq. (1) where the cap pressure is given by Pcap ¼
Pions
cap þ Pstr

cap. Applying the equilibrium condition
PinðReqÞ ¼ Pres, we obtain the equilibrium end-to-end
distance Req. All equations were solved with a finite
element solver [55].
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In the following, we compare the obtained swelling
equilibria for both models to the periodic gel model for
different charge fractions, chain lengths, and reservoir salt
concentrations. For selected parameters, Fig. 2 demon-
strates that for all models the gel swells: (i) more with
increased charge fraction f; (ii) less with higher salt
concentration in the reservoir cbs , in good agreement with
the data of the periodic gel model. Both models also work
for Manning parameters larger than unity, contrary to the
Katchalsky model [31]. Further, at high charge fractions
(f > 0.5) they show better agreement with the periodic gel
model than the self-consistent field theory presented in
Ref. [32]. The PB model has basically the same accuracy as
the single-chain MD model for the selected parameter
regions. Enlarging the comparison across a wide parameter
range to all available data, yielding 60 data points, Fig. 3
shows an excellent agreement of both models against the
periodic gel model used here as the reference standard. Our
PB model has the known limitations [39,56]: multivalent
ions, high charge densities (e.g., at high compressions of
the gel) or high ionic concentrations lead to deviations due
to neglecting ionic and excluded volume correlations that
also exist in polyelectrolyte gels [57] or charged rod

systems [39,58]. However, these limitations do not apply
to our single chain MD model.
We now generalize the PB model to account for weak

groups similar to using the charge regulating boundary
condition [59]. However, we use charge regulation as a way
to determine the space charge density of the penetrable rod.
For a weak polyelectrolyte where monomers may be
neutral or charged (HA⇌A− þ Hþ) the titratable mono-
mers (A− or HA) are distributed with pðr⃗Þ resulting in a
concentration c0ðr⃗Þ ¼ Npðr⃗Þ. The dissociation constant
is given by Ka ¼ cðA−ÞcðHþÞ=cðHAÞ ¼ 10−4 mol L−1.
Chemical equilibrium results in:

cðA−; r⃗Þ ¼ c0ðr⃗ÞKa

cbðHþÞ exp½−e0ψðr⃗Þ=ðkBTÞ� þ Ka
; ð8Þ

and therefore ρfðr⃗Þ ¼ −e0cðA−; r⃗Þ. In the case of charge
regulation, we also explicitly model pH (while neglecting
any small OH− concentration). Bulk charge neutrality
implies that the sum of the product of all species multiplied
with their valency needs to be zero (or equivalently):

cbðHþÞ þ cbðNaþÞ ¼ cbðCl−Þ ð9Þ

Note that the bulk salt concentration cbsalt is related to
cbNaþ ¼ cbsalt and cbCl− ¼ cbsalt þ cbHþ to ensure charge
neutrality.
In Fig. 4, we show the equilibrium extension Req as a

function of the pKa − pH. The gel swells less with lower
pH ¼ −log10½cbðHþÞ=ðmol=LÞ� (pKa − pH becoming
larger) since the acid becomes less dissociated (less
charged). The gel also swells less with higher salt con-
centration due to increased screening and a higher pressure
exerted by the salt reservoir. These findings are in good
qualitative agreement with experiments [60,61].

(a)

(b)

FIG. 2. Comparison between the three models. The equilibrium
swelling length Req as a function of (a) the charge fraction f along
the gel polymer backbone for csalt ¼ 0.01 mol L−1 and N ≈ 80;
(b) the salt bath concentration csalt for f ¼ 0.5 and N ≈ 60. As
can be seen in Fig. 3, the quality of the predictions of the single-
chain model and the PB model for other parameter combinations
are also very good.

FIG. 3. The swelling equilibria of the single-chain cell model
and the PB model compared to the periodic gel simulations. The
results are compared for awide exploration of in total 60 parameter
combinations with N ≈ 40, 60, 80, f ∈ f0.125; 0.25; 0.5; 1g and
csalt ∈ f0.01; 0.02; 0.05; 0.1; 0.2g mol L−1. The linear function
has the form yðxÞ ¼ x.
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In summary, we presented two successively coarsening
mean-field models that can predict swelling equilibria for
charged macrogels. The first one, the single-chain cell
model, is a charged bead-spring model with explicit salt
ions confined within a cylindrical cell which can undergo
affine volume changes. The computational cost for solving
the single-chain cell model is at least an order of magnitude
lower than for the periodic gel model. In the next model we
replaced the charged single-chain and all ions by suitable
charge distributions and use the PB framework to derive the
equilibrium cylindrical cell length. This model can be
solved numerically, i.e., with standard finite element
solvers, and is yet at least another order of magnitude
faster than the single-chain cell model. Since both models
can predict the swelling equilibria in similar good agree-
ment for a wide parameter range with the more elaborate
periodic gel model, we can use the extremely efficient PB
model for predictions about gel swelling equilibria. The PB
model was further generalized to account for charged gels
containing weak groups. We find that the gel behavior
under different pKa − pH conditions as well as salt
reservoir concentrations qualitatively agrees with exper-
imental findings and theoretical expectations.
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