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Although Josephson junctions can be viewed as highly nonlinear impedances for superconducting
quantum technologies, they also possess internal dynamics that may strongly affect their behavior. Here,
we construct a computational framework that includes a microscopic description of the junction (full
fledged treatment of both the superconducting condensate and the quasiparticles) in the presence of a
surrounding electrical circuit. Our approach generalizes the standard resistor capacitor Josephson model to
arbitrary junctions (including, e.g., multiterminal geometries and/or junctions that embed topological or
magnetic elements) and arbitrary electric circuits treated at the classical level. By treating the super-
conducting condensate and quasiparticles on equal footings, we capture nonequilibrium phenomena such
as multiple Andreev reflection. We show that the interplay between the quasiparticle dynamics and the
electrical environment leads to the emergence of new phenomena. In a RC circuit connected to single
channel Josephson junction, we find out-of-equilibrium current-phase relations that are strongly distorted
with respect to the (almost sinusoidal) equilibrium one, revealing the presence of the high harmonic ac
Josephson effect. In an RLC circuit connected to a junction, we find that the shape of the resonance is
strongly modified by the quasiparticle dynamics: close to resonance, the current can be smaller than
without the resonator. Our approach provides a route for the quantitative modeling of superconducting-
based circuits.
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There is currently a huge effort around the world—both
within academia and major industrial partners—to promote
the superconducting transmon quantum bit [1–3] from a
laboratory object to a viable technology for building a
quantum computer. The central element of this approach is
a weak normal link between two pieces of superconductors:
the Josephson junction. Although tunneling junctions with
an insulating (oxide) barrier are the most mature elements,
other types of junctions such as atomic contacts [4]
(with very few propagating channels), semiconducting
nanowires [5] (with high spin-orbit suitable for stabilizing
Majorana bound states), superconducting-ferromagnetic-
superconducting [6,7] (with anomalous current-phase rela-
tions), or multiterminal devices [8] could provide new
functionalities to the superconducting toolbox. Although
the theoretical description of these objects is rather well
understood [9], many relevant regimes lie outside of what
may be treated analytically, and the development of
numerical methods is important. In fact, the complexity
of the circuits that are being created is increasing very
rapidly, and building predictive numerical tools is a key
element for the success of any quantum technology.
Two very successful complementary viewpoints are

commonly used to describe Josephson junction circuits.
The first one is the resistor capacitor Josephson (RCJ)
model [10,11] that views the Josephson junction as
a highly nonlinear impedance embedded in an electric
circuit. In this model, one considers a classical circuit such

as the ones shown in the insets of Fig. 1 or Fig. 3 with
resistances (V ¼ RI), capacitances (I ¼ C∂tV), inductan-
ces (V ¼ L∂tI) or other classical elements. The Josephson
junction is described by its current-phase relation
I ¼ Ic sinφ and the Josephson relation ∂tφ ¼ ð2e=ℏÞV.

FIG. 1. Upper-left inset: simulated circuit, with an RC biased
Josephson junction.Main panel: result of theRC-BdG simulation.
Dashed line: voltage RI0 applied by the generator versus time t.
I0 is raised and decreased slowly to keep the system quasiadia-
batic. Blue line: voltageVðtÞmeasured across the junction. Upper-
right inset: enlarged view of main curve revealing the oscillations
due to the ac Josephson effect.
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Such a simple model is surprisingly powerful. It captures
the hysteresis loops of the I-V curves. Its simple extension,
where one adds a Langevin stochastic term to account for
finite temperature, accurately describes the noise properties
found experimentally, including the probability for the
junction to switch from the superconducting branch [12].
It has also been successfully used for more elaborate
circuits that include resonators [13]. Its quantum extension
provides the model used to design the various sorts of
superconducting qubits [14] and has been shown to
describe very accurately a large corpus of experimental
data [15]. Yet, the model fails dramatically in some very
simple limits. For instance, at large voltages, it does not
properly reproduce the ohmic behavior of the circuit
because the latter involves the excitation spectrum of the
junction, which is not accounted for in the current-phase
relation. More importantly, it does not account for some
important out-of-equilibrium phenomena, such as multiple
Andreev reflection (MAR) [16,17] processes.
The second model uses a microscopic mean-field

description of the junction through the (time-dependent)
Bogoliubov–De Gennes (BdG) equation. BdG models
capture most of the salient features of these junctions,
including those that contain exotic (e.g., topological or
magnetic) materials. It naturally describes MAR [17], the
interplay with microwaves [18], ac Josephson effects, and
emergent topological effects in multiterminal geometries
[19]. Until recently, however, the direct numerical integra-
tion of BdG equations has been very limited due to the
intrinsic computational complexity [20] and did not include
the electromagnetic environment of the junction.
The present Letter builds on recent advances made in

time-dependent computational transport [21] to construct a
numerical method that merges the RCJ model with the BdG
equation, thereby providing a fully self-consistent treat-
ment of the Josephson junction and its electromagnetic
environment at the BdG level (hereafter called the RC-BdG
model). The method has an arbitrary precision and is
scalable to hundreds of thousands of orbitals, paving the
way to the simulations of complex superconducting cir-
cuits. It applies to arbitrary BdG equations and classical
electromagnetic environments.
Problem formulation.—We model our circuits in two

parts. First, the junction itself is described with a micro-
scopic BdG Hamiltonian Ĥðφ; tÞ that depends explicitly on
time t (through, e.g., a capacitive gate) and on the phase
difference φðtÞ between the two superconductors (which
extends to a vector when more than two superconductors
are involved). Note that, due to the ac Josephson effect, the
problem is intrinsically time dependent, even in the absence
of time-dependent perturbations. Integrating the BdG
equation provides the density matrix ρ̂ðtÞ from which
one can compute the current IðtÞ that flows through the
system. Below, we restrict ourself to the average current,
but its quantum fluctuations are also accessible through our

formalism [22]. The second part of the model describes
the classical circuit, or the electromagnetic environment,
that surrounds the junction. The classical equations that
describe these circuits take the form of a differential
equation for φ. More complex circuits are described in a
similar way with more degrees of freedom describing the
classical circuit. The set of equations reads

iℏ∂tρ̂ ¼ ½Ĥðφ; tÞ; ρ̂�; ð1aÞ

IðtÞ ¼ TrðÎ ρ̂Þ; ð1bÞ

d2φ
dt2

¼ F

�
φ;

dφ
dt

; IðtÞ
�
; ð1cÞ

where the function Fðφ; dφ=dt; IðtÞÞ describes the dynam-
ics of the classical circuit (RC or RLC equation in the
examples below) with IðtÞ as an external source term. We
numerically solve the BdG equation within the Keldysh
formalism using the approach developed in [23,24], where
the problem is unfolded onto a set of Schrödinger equations
for scattering wave functions. An efficient algorithm has
been constructed in [20] to integrate the corresponding
equations. The corresponding software, “T-KWANT,” relies
on the KWANT package [25] and will be released as open
source in the near future. Equation (1) alone amounts to
solving a few hundred time-dependent Schrödinger equa-
tions (with the actual number depending on the required
energy resolution). The self-consistent condition [Eqs. (1b)
and (1c)] makes the problem significantly more challenging
because it creates nonlinear couplings between these
Schrödinger equations. Following [21], we address this
nonlinear coupling by taking advantage of the separation of
timescales in the problem between the microscopic time-
scales of the BdG equation (which imposes discretized time
steps of lengths much smaller than ℏ=EF, with EF as the
Fermi energy) and the evolution of the electromagnetic
variables IðtÞ and φðtÞ that takes place on much slower
timescales (typically gigahertz frequencies as compared
with petahertz for the Fermi energy in actual devices).
Hence, we use a doubly adaptive predictor-corrector
approach for φðtÞ as explained in [21]: Eq. (1a) is integrated
with a “predicted” function φðtÞ, and Eqs. (1b) and (1c) are
used on the larger timescale to construct this prediction. A
straightforward time adaptive fourth order Runge-Kutta
[26] is used for the integration of Eq. (1c). We used the
algorithm of [27] to calculate the (Andreev) bound states of
the model with precision. The method is general to any
Hamiltonian Ĥ that is quadratic in creation and destruction
operators. Hence, it may handle electron-electron interac-
tion effects at the mean field level or random phase
approximation level [21] but does not capture correlation
effects. Static or dynamic disorder may be added directly
[23]. The full code used for generating the data of this
Letter can be found in [28].
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To be specific, we now turn to a particular BdG
Hamiltonian that describes a single channel junction.
The BdG Hamiltonian describes a one-dimensional system
with the two superconductors corresponding to x < 0 and
x > 0, whereas the normal region is formed by a single site
at x ¼ 0, placing the system in the short junction limit,

Ĥ ¼
Xþ∞

x¼−∞
σ¼↑;↓

eiφðtÞδx;−1 ĉ†xσ ĉxþ1;σ þ ðUδx;0 − EFÞĉ†xσ ĉxσ

þ
Xþ∞

x¼−∞
Δð1 − δx;0Þĉ†x↑ĉ†x↓ þ H:c: ð2Þ

Here, φðtÞ ¼ ðe=ℏÞ R t Vðt0Þdt0, where VðtÞ is the voltage
difference across the junction,Δ is the superconducting gap
inside the superconductors, andU is a potential barrier used
to tune the transmission probabilityD of the junction. In the
calculations below, we use EF ¼ 2, Δ ¼ 0.1 (which will be
used as our unit of energy), and U ¼ 2, which corresponds
to a junction with an intermediate transmission ofD ¼ 0.5.
For this value, the equilibrium current-phase relation has
small deviations with respect to a sinusoidal shape,
but the I-V characteristics of the isolated junction exhibit
distinct cusps at voltages of eV ¼ Δ=n, n ∈ f1; 2; 3;…g
(MAR) [17]. The precise relation IðφÞ ¼ Ic sinðφÞ is
recovered in the tunneling regimeD ≪ 1, and eV < Δwith
Ic ¼ 2eΔD=h.
Results for the RC-BdG model.—The first electromag-

netic environment we consider is a simple RC circuit as
sketched in Fig. 1. The capacitance C typically accounts
for the electron-electron interaction in the junction itself,
whereas the resistance R accounts for the finite residual
resistance in the whole circuit. This RC circuit is the
minimum electromagnetic environment that must be con-
sidered. The RCJ model for this circuit (where the BdG
equation is replaced by the current-phase relation) reads

d2φ
dt2

þ 1

Q
dφ
dt

þ sinðφÞ ¼ I0
Ic
; ð3Þ

where the time t has been rescaled as t → ω0t. ω0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏIc=ð2eCÞ

p
is the intrinsic frequency of the circuit for

small oscillating amplitudes, and Q ¼ RCω0 is the corre-
sponding quality factor. The physics of this model is well
understood [11]: for I0 < Ic, all the current passes through
the junction (supercurrent branch); whereas for I0 > Ic, the
equilibrium solution is unstable and a voltage develops
across the junction. Interestingly, this model is hysteretic
for underdamped circuits Q > 1, and a dynamical solution
with _φ ≠ 0 exists for some values of I0 < Ic. At a high bias
current I0 ≫ Ic, most of the current is dissipated by the
resistor R, and the RCJ model predicts I0 ¼ RV̄ (where V̄
is the average voltage difference seen by the junction).
This prediction misses an important contribution from the

junction: its intrinsic resistance RJ ¼ h=ð2e2DÞ in the
normal state. Indeed, at a large bias current, one expects
I0 ¼ ð1=Rþ 1=RJÞV̄.
We now turn to the full simulation of the RC-BdG

model. The bare simulation data are shown in Fig. 1, where
the dashed line corresponds to a slow (quasistatic) ramp of
I0 so that the entire I-V characteristics of the device can be
extracted from a single simulation. We ramp the current
first up and then down to zero in order to capture the
hysteresis loop of the junction. The blue line corresponds to
the voltage across the junction as a function of time. As
shown in the inset, the blue line contains an important
oscillating part that corresponds to the ac Josephson effect.
From these data, we calculate the voltage V̄ across the
junction, averaged over a small time window (to get rid of
the ac Josephson signal). Figure 2 shows the resulting plot
of I0 versus V̄ (blue line). The dotted line corresponds to
the various asymptotic of the RCJ model discussed above,
whereas the dashed line corresponds to the pure BdG
model in the absence of the electromagnetic environment.
The pure BdG model displays the usual kinks character-
istics of the opening of a new MAR channel [18]. The RC-
BdG simulations reconcile the two limits: the pure MAR
curve at high bias, and the supercurrent branch of the
RCJ model at small bias. In the crossover between these
two extreme limits, it provides the minimum model that

FIG. 2. RC-BdG model. Bottom panel: bias current I0 versus
the average voltage across the junction V̄ for an underdamped
oscillator Q ≈ 1.7. Dotted lines: various asymptotes of the RCJ
model; see text. Dashed line: pure BdG model without the
environment. Upper panels: out-of-equilibrium current-phase
relations at four different points of the I0 − V̄ curve. The dotted
line corresponds to the equilibrium current-phase relation of the
pure junction.
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captures all important physical contributions, and hence
quantitatively predicts the full hysteresis loop including the
retrapping current. The most interesting features of the
system show up in its dynamics. Recording the phase
difference φðtÞ across the junction and the current IðtÞ that
flows through it, the dynamics is properly captured by the
corresponding out-of-equilibrium current-phase I-φ rela-
tion obtained from the corresponding parametric plot. The
result is shown in the upper panels of Fig. 2. Such out-of-
equilibrium I-φ could be reconstructed from a high-
frequency measurement of the different harmonic of
VðtÞ. As a reference, Fig. 2 includes the equilibrium I-φ
characteristics of the junction (dotted line) obtained by
taking all contributions into account (i.e., both Andreev
bound states and the small contribution from the continu-
ous part of the spectrum). This equilibrium I-φ relation
contains small deviations to the sinusoidal form. However,
out-of-equilibrium relations can be strongly different from
the simple sinusoidal shape. This is true in particular in the
returning part of the hysteresis loop (red line, square,
visible component of the second harmonic) and close to the
MAR cusps (yellow line, triangle, strongly nonsinusoidal).
In these regimes, the excursions in voltage across the
junction are wide (as can be seen directly from Fig. 1) and
the junction is effectively highly nonlinear.
Results for the RLC-BdG model.—We now turn to a

second circuit where the junction is put in series with a
classical RLC resonator, as sketched in the inset of Fig. 3.
The electromagnetic circuit is slightly more complex than
the previous RC model; but, in return, the highly nonlinear
behavior shown in the previous example manifests
itself already on dc observables. The resonator has a quality
factor of Q ¼ R

ffiffiffiffiffiffiffiffiffi
C=L

p
and a resonance pulsation of

ω0 ¼ 1=
ffiffiffiffiffiffiffi
LC

p
. The corresponding impedance ZðωÞ takes

the form of R=ZðωÞ ¼ 1þ iQ½ω=ω0 − ω0=ω� and filters
the frequency around ω0. Such an environment has been
studied in a series of recent experiments using tunnel
junctions [29–32]. The RLC circuit provides a direct probe
of the ac signal present in the system. We expect a main
resonance for 2eVJ=ℏ ¼ ω0 when the ac Josephson effect
drives the RLC circuit. Due to the nonlinear character of the
junction, the higher harmonics of the ac Josephson effects
are generated so that additional features are expected at
2eVJ=ℏ ¼ ω0=n. Likewise, the nonlinearities imply that
the RLC circuit can also be driven parametrically at 2ω0,
leading to features at eVJ=ℏ ¼ ω0=n.
We compare the RLC-BdG calculations with an

improved RLCJ model. The improved RLCJ model cap-
tures the supercurrent branch and the MAR nonlinear I-V
curve as

IðφÞ ¼ Ic sinφþ IMARð2e _φ=ℏÞ; ð4Þ

where IMARðVÞ is the dc nonlinear I-V characteristic of the
junction in the absence of an electromagnetic environment
(dashed line of Fig. 4). The numerical results for the
average current Ī versus voltage are shown in Fig. 4 for four
different RLC circuits with different frequencies ω0. We
concentrate on the main features around 2eVJ=ℏ ¼ ω0 and
disregard the smaller peaks associated with higher har-
monics and/or parametric pumping. The improved RLCJ
model (dotted line) presents a Lorentzian-like resonance at
2eVJ=ℏ ¼ ω0 for all four RLC circuits. When the reso-
nance lies in the tunneling regime of the junction (blue
line), there is a very good agreement between the improved
RLCJ model and the full RLC-BdG simulations. The
agreement is also qualitatively (but not quantitatively)
good when the resonance corresponds to high voltages
in the almost “ohmic" regime of the junction (yellow line).
However, for the two circuits where the resonance lies in

FIG. 3. RLC-BdG model. Upper inset: schematic of the RLC
circuit. Main panel: voltage VJðtÞ across the junction (blue line)
versus time t for a linear voltage ramp in V0ðtÞ (red dashed line).
Q ¼ 20, ω0 ¼ Δ, and R ¼ 3h=2e2 ≃ 38.7 kΩ. Bottom inset:
enlarged view of the main curve showing the ac Josephson
effect oscillations. The resonance of the RLC circuit is visible for
eVJ ¼ ℏω0=2 and eVJ ¼ ℏω0=4

FIG. 4. Current-voltage relation for four different resonator
frequencies ω0=Δ ¼ 1=4; 2=3; 1, and 1.4. Dashed line: IMARðVÞ
in the absence of environment. Thin color lines: RLC-BdG
simulations. Dotted lines: improved RLCJ model. Bottom panels:
enlarged views of the main figure.
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the vicinity of a kink of the IMARðVÞ characteristic, the two
models are strikingly different and the improved RLCJ
model is no longer applicable (green and red lines): the
improved RLCJ model is typically off by �50%, including
in the linewidth. In these regimes, we find that, for
2eVJ=ℏ > ω0, the current is reduced with respect to
IMARðVÞ instead of the Lorentzian increase observed in
the improved RLCJ model. This reduction of the current is
a direct manifestation of the nonlinear ac physics happen-
ing in the device. This dc prediction is the counterpart of the
highly nonsinusoidal nonequilibrium current-phase rela-
tions discussed above for the RC-BdG case. However, the
fact that the observable is in dc makes this prediction more
easily accessible to an experimental test.
Conclusion.—The environment-BdG model presented in

this Letter unifies simple RCJ-like models with microscopic
models that include the quasiparticle spectrum of the
junctions as well as its dynamics out of equilibrium. We
have shown that the interplay between the two physics
strongly modifies the behavior of the system and leads to
new phenomena, such as the voltage induced nonsinusoidal
current-phase relations. Our approach provides a practical
route to study the engineering of electromagnetic environ-
ments in the presence of junctions that go beyond simple
tunneling devices. Besides the example studied in this Letter
(a single channel junction with arbitrary transparency), other
systems such as Josephson field effect transistors [33],
Majorana devices [34], and multiterminal devices [35] that
are being developed by the community could be studied with
the same technique [36]. On the technical level, the approach
could be extended to include electron-electron interaction
and/or a self-consistent calculation of the superconducting
gap at the time-dependent mean-field level [21].
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