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We propose that propagating one-dimensional Majorana fermions will develop in the vortex cores of
certain iron-based superconductors, most notably LiðFe1−xCoxÞAs. A key ingredient of this proposal is the
3D Dirac cones recently observed in photoemission experiments [P. Zhang et al., Nat. Phys. 15, 41 (2019)].
Using an effective Hamiltonian around the Γ-Z line we demonstrate the development of gapless one-
dimensional helical Majorana modes, protected by C4 symmetry. A topological index is derived which
links the helical Majorana modes to the presence of monopoles in the Berry curvature of the normal state.
We present various experimental consequences of this theory and discuss its possible connections with
cosmic strings.
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Recent experimental [1–6] and theoretical [7–9] advances
suggest that iron-based superconductors (FeSCs) can sustain
fractionalized excitations. Building on these ideas, here we
propose the emergence of dispersive, helical Majorana states
in the flux phase of certain FeSCs.
Twelve years ago, two major discoveries occurred in

condensed matter physics: the observation of high temper-
ature superconductivity in the iron pnictides [10,11] and the
discovery of topological insulators (TIs) [12]. FeSCs have
challenged our understanding of strongly correlated electron
materials, offering the possibility of practical applications.
Topological insulators have transformed our understanding
of band physics [13,14] and have led to the discovery of
symmetry-protected Weyl and Dirac semimetals [15].
Remarkably, those materials emulate certain aspects of
elementary particle physics in solid state experiments.
Yet despite the excitement in these two new fields, until

recently, there has been little overlap between them. Iron-
based superconductors are layered structures, in which d
orbitals of the iron atoms form quasi-two-dimensional
bands. The spin-orbit coupling (SOC) in the d bands
was long thought to be too small for topological behavior.
However, the recent discovery of marked spin-orbit split-
ting in photoemission spectra [16,17] has overturned this
assumption, with an observation [1,7,8,17] that at small
interlayer separations, an enhanced c-axis dispersion drives
a topological band inversion between the iron d bands and
ligand pz orbitals. When the chemical potential lies in the
hybridization gap between the d and p bands, the corre-
sponding topological FeSCs sustain Majorana zero modes
wherever magnetic flux lines intersect with the surface,
Fig. 1(c). These excitations have been observed [3–6].
Here we demonstrate that on additional doping, topo-
logical behavior is expected to give rise to dispersive,
helical Majorana fermions, Fig. 1(e), along the cores of

superconducting vortices. Observation of these excitations
would provide an important confirmation of the topological
character of iron-based superconductors, yielding a new
setting for the realization of Majorana fermions.
Helical Majorana fermions in one dimension corres-

pond to a pair of gapless counterpropagating fermionic

FIG. 1. Topology of FeSCs. (a) Band structure in the normal
state. For small lattice spacing in c direction, pz orbitals cross the
d states along the Γ-Z line. When the chemical potential is near
the spin-orbit induced gap (marked by a pink disk around 0.1 eV),
the ground state is a topological superconductor. (b) In a vortex
core, this implies a gapped dispersion of bulk Caroli–de Gennes–
Matricon states with (c) Majorana zero modes (green pancakes) at
the surface termination. At higher doping, when the Fermi energy
lies in the vicinity of the Dirac node (marked by a yellow disk
around 0.17 eV), (d),(e) C4 symmetry protects helical Majorana
states dispersing along the vortex cores.

PHYSICAL REVIEW LETTERS 122, 207001 (2019)

0031-9007=19=122(20)=207001(6) 207001-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.122.207001&domain=pdf&date_stamp=2019-05-24
https://doi.org/10.1038/s41567-018-0280-z
https://doi.org/10.1103/PhysRevLett.122.207001
https://doi.org/10.1103/PhysRevLett.122.207001
https://doi.org/10.1103/PhysRevLett.122.207001
https://doi.org/10.1103/PhysRevLett.122.207001


excitations, first proposed as excitations within the “o−”
vortices of superfluid 3He-B [18]. While these excitations
have not been observed, possibly because the energetics of
3He-B favors less symmetric v vortices [19,20], which do
not support helical Majorana modes, we here propose an
alternative realization in FeSCs. Recent experimental
advances (Table I) provide evidence for chiral (i.e., unidi-
rectional) Majorana modes at the boundaries of various
two-dimensional systems, including superconducting-
quantum anomalous Hall heterostructures [21], 5=2 frac-
tional quantum Hall states [22], and the layered Kitaev
material α-RuCl3 [23].
Majorana modes in FeSCs.—Here we summarize the

main physics leading to the appearance of helical Majorana
subgap states in the flux phase of FeSCs, when the
magnetic field is aligned in the c direction. We shall
concentrate on a case where the vortex core size (deter-
mined by the coherence length) is much larger than the
lattice spacing, so that vortex-induced interpocket scatter-
ing can be neglected. This permits us to concentrate on
the region of the Brillouin zone (BZ) which harbors the
topological physics, in this case the Γ-Z line.
Along this line, the relevant electronic states are

classified by the z component of their total angular
momentum Jz ¼ Lz þ Sz. We may exploit the fact that
the low-energy Hamiltonian close to the Γ-Z line [1,8,34]
features an emergent continuous rotation symmetry. Three
pairs of states are important, jdðxþiyÞz↓i; jdðx−iyÞz↑i (with
jz ¼ �1=2), jpz;↑i; jpz;↓i (also jz ¼ �1=2), and
jdðxþiyÞz↑i; jdðx−iyÞz↓i (jz ¼ �3=2). Their dispersion is
shown in Fig. 1 along with the dxy bands; we used the
low-energy model of Ref. [8].
We briefly recapitulate the appearance of localized

Majorana zero modes. The jz ¼ �1=2 pz states can
hybridize with the corresponding jdðxþiyÞz↓i; jdðx−iyÞz↑i
states at intermediate kz, leading to an avoided crossing
of the bands [pink circle at 0.1 eV in Fig. 1(a)]. Since the p
and d orbitals carry opposite parity, the band crossing leads
to a parity inversion at the Z point. The system is therefore
topological [35]. In the superconducting state, this system
is then expected [25] to host topological surface super-
conductivity, developing localized Majorana zero modes at

the surface termination of a vortex, Fig. 1(c). These
Majorana zero modes can be alternatively interpreted as
the topological end states of a fully gapped, 1D super-
conductor inside the vortex core [8]. In the bulk, where kz is
a good quantum number, the vortex hosts fermionic subgap
states for each kz near the normal state Fermi surface,
Fig. 1(b). In particular, the lowest lying states carry angular
momentum l ¼ 0 and develop a topological hybridization
gap upon inclusion of SOC.
However, bulk FeSCs can also support dispersive helical

Majorana modes in their vortex cores. To see this, we now
turn to the situation where the chemical potential lies near
the Dirac cone, highlighted by a yellow circle at about
0.17 eV in Fig. 1(a). At this energy, semimetallic Dirac
states are observed in ARPES (angle-resolved photoemis-
sion spectroscopy) [1]: these occur because the different jz
quantum numbers of jpz;↑i; jpz;↓i and jdðxþiyÞz↑i;
jdðx−iyÞz↓i prevent a hybridization on the high symmetry
line leading to a Hamiltonian of the (tilted) Dirac form
HðkÞ ¼ HþðkÞ ⊕ H−ðkÞ [1,34],

H�ðkÞ ¼
�

MpðkzÞ �vkx þ ivky
�vkx − ivky MdðkzÞ

�
; ð1Þ

where HþðkÞ [H−ðkÞ] acts in the subspace of positive
[negative] helicity spanned by jpz;↑i; jdðxþiyÞz↑i
½jpz;↓i; jdðx−iyÞz↓i�. The dispersion MpðkzÞ;MdðkzÞ of
the relevant p and d orbitals is plotted in Fig. 1(a), and
v is the transverse velocity.
We now assume that below Tc, a spin-singlet, s-wave

superconducting phase develops. In an Abrikosov lattice of
vortex lines, translational symmetry allows us to solve the
problem at each kz separately. At the particular values of
kz ¼ �k�z , where Mpð�k�zÞ ¼ Mdð�k�zÞ, Hþ and H−
separately take the form of a TI surface state.
Consequently [25], for each helicity a nondegenerate
Majorana zero mode appears in each vortex. Now, in
contrast to the case of Fig. 1(b), these two modes carry
different angular momenta l ¼ �1 so that they cannot be
mixed by any perturbation which respects theC4 symmetry.
This leads to the gapless linear helical dispersion near �k�z.

TABLE I. Phases of matter which sustain ð1þ 1ÞD helical or chiral Majorana fermions. We present all experimental evidence, the first
material specific theoretical proposal, and generic classes of systems (in square brackets). We omitted Majorana modes which occur
at fine-tuned critical points, e.g., at topological phase transitions [8,24] or at S-TI-S junctions with flux π [25]. Altland-Zirnbauer class
(AZ cl.); experiment (Expt.); noncentrosymmetric superconductor (NCS); quantum anomalous Hall (QAH); quantum Hall (QH);
superconductor (SC); superconducting semimetal (SSM).

Boundary of 2D systems Vortex in 3D system

Chiral
Expt.: QAH-SC [21], α-RuCl3 [23], ν ¼ 5=2 QH [22] Expt.: Not observed
Theory: pþ ip SC [26] (Sr2RuO4 [27]?) [AZ cl. D [13]] Theory: TI-SC heterostructure [28] [Weyl SSM]

Helical
Expt.: Not observed Expt.: Not observed
Theory: NCS [29–32], s� SCþ SOC [33] [AZ cl. DIII [13] Theory: 3He-B [18], LiFe1−xCoxAs (this work) [Dirac SSM]
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Topological origin of helical Majorana modes.—The
crystalline topological protection of the helical Majorana
modes in the flux phase of FeSCs can be understood as
follows. First, we note that in the normal state, crystalline
symmetries, in particular C4, impose the decoupling of
Hamiltonian Eq. (1) into the direct sum of two decoupled
helical sectors. Within Hþ (H−), two Weyl points of
opposite topological charge �1 (∓ 1) appear at
ð0; 0;�k�zÞ, Fig. 2(a). Since crystalline symmetry ensures
perfect decoupling, it is favorable to concentrate on a given
sector in these explanations and superimpose both sectors
in the end. The Berry flux connecting the two Weyl points
implies a quantum anomalous Hall state for kz ∈ ð−k�z ; k�zÞ
[36]. The resulting family of chiral edge states forms a
Fermi arc in the surface BZ, Figs. 2(b) and 2(c). In view of
their chiral nature, Fermi arc states can only terminate at a
kz which sustains critical bulk states—i.e., at the projection
of the Weyl points. From the boundary perspective, their
presence is ensured by the topological phase transition
at �k�z .
We now turn to the superconducting case in the flux

phase, for which a vortex core represents a normal state
cylinder inside of a fully gapped superconducting back-
ground. At each kz ∈ ð−k�z ; k�zÞ the boundary of the vortex
core resembles an interface between quantum anomalous

Hall state and topological superconductor. This leads to a
chiral Majorana encircling the cylinder—i.e., the Majorana
analog [1,37] of Fermi arc states [purple circles, Fig. 2(d)].
As explained above, edge states may only disappear as a
function of kz when the bulk is critical; therefore, it follows
that topologically protected vortex core subgap states must
cross the Fermi energy at �k�z .
We conclude this discussion with three remarks. (1) For

typical vortex core diameters ξ the chiral Majorana edge
states are gapped by finite size effects, yet the above
topological argument is still valid, Fig. 2(e). In particular, as
in the case of a 3D TI surface, the magnetic flux prevents
the critical bulk (i.e., vortex core) states at �k�z from
gapping. A different situation occurs in 3He-A, where the
conservation of the spin projection protects the nondisper-
sive Fermi arc states for all kz between the projection of
Weyl points [20,34,38]. (2) Taking into account that Hþ
and H− sectors have opposite helicity, the actual state
for kz ∈ ð−k�z ; k�zÞ is a quantum spin Hall insulator, and
Fermi arc states are helical rather than chiral. (3) For weak
misalignment of the flux line and the c axis, mixing
between decoupled helical sectors H� is negligible.
Under this assumption, the topological protection of helical
modes persists.
Bogoliubov–de Gennes (BdG) Hamiltonian.—To con-

firm these heuristic arguments, we have perturbatively
diagonalized [34] the BdG Hamiltonian of a topological
FeSC with a single vortex. Here, we concentrate on
states near k�z and employ a simplified Hamiltonian
H ¼ Hþ ⊕ H−, where

H� ¼ ðH� − μÞτz þ ΔðrÞτþ þ Δ�ðrÞτ−: ð2Þ

The Fermi energy μ is measured from the Dirac point,
ΔðrÞ¼ jΔðrÞjeiθ is the superconducting gap (jΔð∞Þj≡ Δ),
τx;y;z are Pauli matrices in Nambu space, and τ� ¼
ðτx � iτyÞ=2. Assuming circularly symmetric vortices,
we expand the wave function in angular momenta, seeking
solutions of the form Ψ� ¼ P

le
ikzzþilθU�ðθÞΨðlÞ

� ðr; kzÞ,
where the precise form of the diagonal matrices U�ðθÞ is
given in Supplemental Material [34]. At l ¼ �1 a chiral
symmetry in the lth sector HðlÞ

� allows us to explicitly
construct an unpaired zero energy solution Ψð�1Þ

� ðr; k�zÞ in
each helical sector. We use these solutions to perturbatively
include momenta kz − k�z , a Zeeman field gμBB=2, and
orbital dependent gaps Δp − Δd ¼ δΔ ≠ 0. By projecting
onto the low-energy space, we obtain the effective dis-
persions

E�ðkzÞ ¼ �½vMðkz − k�zÞ − wMδΔþ gμBB=2�: ð3Þ

This confirms the heuristic argument for the appearance
of helical Majorana modes and demonstrates that pertur-
bations merely shift k�z . A similar result holds near −k�z, so
that in total two pairs of helical Majorana modes occur,

FIG. 2. Topological origin of helical Majorana modes. (a) Nor-
mal state BZ with helicity resolved Weyl nodes. (b) Surface BZ
and Fermi arc. (c) Partial real space representation of a cylindrical
Weyl semimetal. Fermi arc states (purple circles) terminate at
topological transitions at�k�z with delocalized, critical bulk states
(green and blue pancakes). (d) A fat vortex: a normal state
cylindrical core (red) embedded in a fully gapped superconductor
(light blue). (e) A realistic thin vortex: Fermi arc states are finite
size gapped, but the π Berry phase at �k�z protects the critical
states in the core [25,34]. (f) The index NðkzÞ, Eq. (4) (purple,
thin line), which we semiclassically relate to σxyðkzÞ, Eq. (7) (red,
thick line).
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Fig. 1(d). In the limit μ ≫ Δ we obtain vM ∼
Δ2∂k�z ½Mdðk�zÞ −Mpðk�zÞ�=μ2 and wM ∼ Δ=μ. The velocity
of helical Majorana modes in vortices of 3He-B has an
analogous parametrical dependence [18].
Index theorem.—We now demonstrate the link between

the helical Majorana modes and the Berry flux between the
two pairs of Weyl points, Fig. 2. While several topological
invariants were proposed [39–42] to describe dispersive
Majorana modes, we here employ a generalization of an
index introduced by Volovik [43] for vortices in 3He.
Our index measures the imbalance between the number
of states of opposite helicity at a given momentum kz,
NðkzÞ ¼ ½N−ðkzÞ − NþðkzÞ�=2, where

N�ðkzÞ¼
X
n

θ½−E�
n ðkzÞ�¼ Im

Z
0

−∞

dω
π
Tr½G�ðω− i0Þ�eω0þ

ð4Þ

counts the number of states with given helicity in the Fermi
sea (G�ðzÞ ¼ ½z −H�ðkzÞ�−1 and n labels quantum num-
bers. In a fully gapped system NðkzÞ is constant as
a function of kz. In contrast, the presence of helical
Majorana modes, Fig. 1(d), implies a jump Nðk�z þ 0þÞ−
Nðk�z − 0−Þ ¼ 1.
We now relate NðkzÞ to the quantized spin Hall con-

ductivity at a given kz using a semiclassical expansion,
which is valid for smoothly varying ΔðrÞ. In the eigenbasis
of the normal state Hamiltonian H�ðpÞjup;ξ;�i ¼
ϵξ;�ðpÞjup;ξ;�i, the BdG Hamiltonian in each band takes
the formHξ;� ¼ dξ;� · τ (where the transverse components
of d describe intraorbital pairing). In the following argu-
ment, we drop the band and helicity indices ξ and � and
employ a Wigner transform [34,44] so that dðR;PÞ ¼
½ReΔðRÞ;−ImΔðRÞ; ϵðPÞ − μ�. Because of the algebra of
Pauli matrices, the Green function Gðω;R;PÞ¼ ½ω−d ·τ�−1
contains a commutator of operator convolutions (denoted
by ∘):

Gðω;R;PÞ ¼ ðωþ d · τÞ∘
�
ω2 − d2 −

i
2
ϵabc½da;∘db�τc

�
−1
:

ð5Þ
The gradient expansion of the convolution is

½da;∘db�ðR;PÞ ≃ ið∇⃗Xda · ∇⃗Pdb − ∇⃗Pda · ∇⃗XdbÞ
þ iΩzêz · ð∇⃗Xda × ∇⃗XdbÞ: ð6Þ

Here, Ωz ¼ ih∂px
upj∂py

upi − ih∂py
upj∂px

upi is the Berry
curvature. Note that within our gauge invariant formalism,
the semiclassical coordinates R, P are kinematic—this
leads to the appearance of Ωz in addition to the Poisson
bracket [45].
We evaluate NðkzÞ for an isotropic vortex of winding

νv to leading order in gradients. The vortex enters Eq. (6) as

∇⃗Xdy × ∇⃗Xdx ¼ νvêz½∂RjΔðRÞj2�=2R. Performing the
radial integration and restoring the band and helicity
indices leads to the result N�ðkzÞ ¼ −νvσxy;�ðkzÞ, where

σ�xyðkzÞ ¼
X
ξ

Z
dkxdky
2π

Ωξ;�
z ðkÞθ( − ϵξ;�ðkÞ): ð7Þ

In this expression, Ωξ;�
z ðkÞ and ϵξ;� are evaluated in the

plane at constant kz. It follows that NðkzÞ ¼ νv½σþxyðkzÞ −
σ−xyðkzÞ�=2 is given by the normal state spin Hall conduc-
tivity which establishes the topological origin of the jump
in the Fermi surface volume, Fig. 2(f).
Experimental realization.—We now summarize the

topological features of iron-based superconductors
observed to date. Topological Dirac surface states have
been detected in FeðTexSe1−xÞ and LiðFe1−xCoxÞAs using
(S)ARPES, both in the normal and superconducting states
[2], while photoemission evidence for 3D Dirac semi-
metallic bulk states in the normal state was also reported in
Ref. [1]. Moreover, zero bias peaks in vortices of the flux
phase of FeðTexSe1−xÞ [3,5,6] and ðLi1−xFexÞOHFeSe [4]
have been tentatively identified as Majorana bound states
[see Fig. 1(c)]. However, the identification is still con-
troversial, and other groups have questioned [46] whether
the bound states are conventional Caroli–de Gennes–
Matricon [47] states. Finally, a robust zero bias peak, akin
to a Majorana bound state, was also reported to occur at
excess iron atoms of FeTe [48]—an effect possibly due to
trapped fluxes [49]. These experimental observations
provide the foundation for our theoretical prediction of
helical Majorana modes in the vortex cores of FeSC Dirac
semimetals. Moreover, a successful experimental observa-
tion of helical Majorana modes in FeSCs could be used as
independent experimental confirmation of the topological
paradigm proposed for FeSCs.
LiðFe1−xCoxÞAs, in which 3D bulk Dirac cones were

observed in (S)ARPES at a doping level of x ¼ 0.09 [1], is
a strong candidate for these Majorana modes. It exhibits a
Tcðx ¼ 0.09Þ ≈ 9 K [50] and, like all FeSCs, is a strongly
type-II superconductor. To get an insight of typical exper-
imental scales we compare to STM studies [51,52] of
vortices in the parent compound LiFeAs (here, Tc ¼ 18 K
is larger but comparable). Vortices are observable at
B ≥ 0.1 T corresponding to typical vortex spacing of
lB ≲ 80 nm, while the core radius is ξ ≈ 2.5 nm.
Therefore, intervortex tunneling, which would gap [53]
the zero modes, is expected to be weak. Furthermore, the
large ratio Δ=EF ∼ 0.5;…; 1 implies that the helical
Majorana band should be well separated in energy from
conventional Caroli–de Gennes–Matricon states [47].
A pair of helical Majorana modes displays universal

thermal conductivity of κ0¼LTe2=h, where L¼π2k2B=3e
2

is the Lorenz number [54], and the observation of this linear
thermal conductivity is a key prediction of our theory. In the
flux phase, each of the Φ=Φ0 vortices hosts two pairs of
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Majorana modes, so that the linear magnetic field depend-
ence κtot ¼ 2κ0Φ=Φ0 of the total heat transport along the
magnetic field direction can be easily discriminated from
the phonon background. A similar effect occurs in the
specific heat C ¼ 2c0Φ=Φ0, with c0 ¼ πk2BT=3vM.
Furthermore, STM measurements are expected to detect
a spatially localized signal in the center of the vortex, with
nearly constant energy dependence of the tunneling density

of states νðEÞ ≃E→0
1=πvM.

Summary and outlook.—In conclusion, we have dem-
onstrated that propagating Majorana modes are expected to
develop in the vortex cores of iron-based superconductors;
see Fig. 1(e). These states are protected by crystalline C4

symmetry, but generic topological considerations; Fig. 2
and Eq. (7) suggest they will be robust against weak
misalignments. A key signature of these gapless excitations
would be a dependence of various thermodynamic and
transport observables on the density of vortices and
magnetic field.
We conclude with an interesting connection which

derives from the close analogy between superconducting
and superfluid vortices and cosmic strings [20]: line defects
thought to be formed in the early universe in response to
spontaneous symmetry breaking of a grand unified field
theory. Defects capable of trapping dispersive fermionic
zero modes [55] may occur in speculative SO(10) grand
unified theories but also in standard electroweak theory
[56,57], and in either case the interaction of cosmic strings
with magnetic fields leads to a sizable baryogenesis.
Helical Majorana modes in the vortex of FeSCs may
permit an experimental platform for testing these ideas.
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Note added in proof.—Recently, two articles [58,59]
appeared and present consistent results on ð1þ 1ÞD
Majorana modes in vortices of FeSCs. Experimental signa-
tures of helical Majorana fermions were reported in
Refs. [60,61].
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