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We study thermal conductivity for one-dimensional electronic fluids. The many-body Hilbert space is
partitioned into bosonic and fermionic sectors that carry the thermal current in parallel. For times shorter
than the bosonic umklapp time, the momenta of Bose and Fermi components are separately conserved,
giving rise to the ballistic heat propagation and imaginary heat conductivity proportional to T=iω. The real
part of thermal conductivity is controlled by decay processes of fermionic and bosonic excitations, leading
to several regimes in frequency dependence. At lowest frequencies or longest length scales, the thermal
transport is dominated by Lévy flights of low-momentum bosons that lead to a fractional scaling, ω−1=3 and
L1=3, of heat conductivity with the frequency ω and system size L, respectively.
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In interacting systems, the Wiedemann-Franz law is
violated and there is no universal relation between the
thermal and electric conductivities. As a result, thermal
transport reveals information that cannot be accessed by
measuring charge transport. Because of experimental and
theoretical challenges, thermal transport is far less explored
compared to charge transport.
In recent years, the situation started to change, and

energy transport was measured in several experiments. The
universal value of thermal conductance g0 ¼ π2T=3h was
observed [1–4] in various devices with ideal point contacts.
Heat Coulomb blockade was observed in Ref. [5], directly
demonstrating a controllable energy-charge separation.
The propagation of heat in the quantum-Hall-effect regime
was intensively investigated [6–11]. Frequency dependence
of the thermal conductivity was studied in various materials
[12–14].
The thermal transport in low-dimensional classical fluids

and 1D anharmonic chains (of which the Fermi-Pasta-
Ulam-Tsingou model [15] is a prominent example) has
been studied in the framework of (nonlinear) fluctuating
hydrodynamics. The corresponding renormalization group
(RG) [16] or self-consistent mode-coupling [17] analysis
predicts that the thermal dc conductivity scales with the
system size as σ ∼ L1=3 in 1D models with momentum
conservation. This prediction was verified by means of
numerical simulations in Ref. [18]. The σ ∼ L1=3 behavior
of the heat conductivity is closely related to the anomalous
broadening, Δx ∼ t1=z ∼ t2=3, (on top of ballistic propaga-
tion) of the sound peak in the density-density correlation
function of the system. The dynamical exponent z ¼ 3=2

entering here is a manifestation of the Kardar-Parisi-Zhang
(KPZ) fixed point in the RG flow that governs the
propagation of the sound mode [19]. The KPZ scaling
of the density-density correlation function was also pre-
dicted (within the classical Gross-Pitaevskii formalism) to
occur in 1D Bose gas at finite temperature [20]. In the
context of 1D Fermi systems the KPZ scaling was
advocated in Ref. [21].
The experimental progress combined with open funda-

mental questions prompts us to study thermal transport in a
1D quantum electronic fluid. In the low-energy limit such
fluids are often described within the Tomonaga-Luttinger
model that linearizes the spectrum of fermions near Fermi
points and treats the interaction of fermions as pointlike.
Via the bosonization procedure [22], the Tomonaga-
Luttinger model maps to free bosons with a linear
dispersion relation. The Luttinger liquid (LL) fixed point
is thus a free theory with essentially trivial kinetics. It turns
out however, that the corrections to it, a finite curvature of
fermionic spectrum and a finite range of interactions, albeit
irrelevant in RG sense, can have profound effect on the low-
energy behavior of the system’s dynamical correlation
functions [23–28]. Therefore, those perturbations are to
be taken into account in the discussion of the thermal
conductivity; i.e., the conventional LL paradigm is not
sufficient for this problem.
With the aforementioned corrections included, the

Tomonaga-Luttinger model turns into an interacting theory
both in fermionic and bosonic [29–33] languages. One
then has to resort to perturbative treatment of the model.
Two choices of basis for such a perturbation theory are
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available [34]: (i) one can choose to work with the
bosonized version of the theory treating the nonlinearity
of fermionic spectrum (that translates into interaction of
bosons) perturbatively; (ii) the bosonic theory can be
refermionized [26,34,35] giving rise to the description of
the system in terms of fermionic quasiparticles that
are related to original electrons via nonlinear unitary
transformation. In the latter approach the curvature of
the bosonic spectrum translates into the interaction of
fermions [36].
It was shown in Ref. [34] that the applicability of

perturbation theory for thermal (with energy of order T)
excitations in the fermionic and bosonic approaches
depends on temperature. Specifically, the effective mass
of fermionic excitations m� and a length l quantifying the
curvature of bosonic spectrum [see Eq. (2)] define a
temperature scale TFB ¼ 1=m�l2. At T < TFB the thermal
fermions are long-living excitations; the perturbation
theory in their interaction is well-behaved and controlled
by the small parameter T=TFB. At higher temperatures,
T > TFB, the proper thermal excitations are bosons and
the bosonic perturbation theory possesses a small param-
eter TFB=T.
In this work we employ the combination of the fermionic

and bosonic frameworks to study low-temperature thermal
conductivity of the electronic fluid. It turns out that
subthermal excitations dominate the thermal transport at
low frequencies and one is faced with the problem of
understanding their kinetics. We show that at lowest
frequencies the behavior of thermal conductivity is anoma-
lous and has the universal scaling σðωÞ ∝ ω−1=3. This
corresponds to length dependent dc thermal conductivity
σðLÞ ∝ L1=3 consistent with the classical hydrodynamic
limit [16,17]. At higher frequencies, we identify a variety of
new regimes characterized by the power-law dependence of
the thermal conductance on frequency, temperature, and
system size.
We consider a model of spinless right- and left-moving

fermions

H ¼
X
η

Z
dxψ†

ηðxÞ
�
−iηvF∂x −

1

2m
∂2
x

�
ψηðxÞ

þ 1

2

Z
dxdx0gðx − x0ÞρðxÞρðx0Þ; ð1Þ

where gðxÞ is the short-range interaction potential, and the
total density ρðxÞ is a sum of the chiral components,
ρðxÞ ¼ ρRðxÞ þ ρLðxÞ. In the low momentum limit
(ql ≪ 1), the interaction potential is gq − g0 ∝ q2l2.
After bosonization, the original Hamiltonian [Eq. (1)] is

mapped to an interacting bosonic model [22,34,37–40], see
Supplemental Material (SM) [41], Sec. I. The interaction
between electrons, Eq. (1), controls the dispersion of the
bosonic modes. At small momenta

ωB
q ¼ uBq jqj; uBq ¼ uð1 − l2q2Þ; ð2Þ

where u ¼ vF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g0=πvF

p
denotes the sound velocity.

We now construct the kinetic equation for bosonic and
fermionic quasiparticles. These equations can be derived
from the fermionic [Eq. (1)] and bosonized [Eq. (1.2) of
SM] versions of the Hamiltonian in a standard way, see SM
[41], Secs. 1, 2.1, and 3.2,

∂NαðqÞ
∂t þ uαq

∂NαðqÞ
∂x ¼ Iα;q½Nα�: ð3Þ

Here α ¼ F=B specifies the type of the quasiparticles
(Fermi or Bose), Nα is a distribution function, and Iα is
the collision integral. A combination of two equations
[Eq. (3)] permits us to extend the Bose-Fermi duality
framework [34] away from thermal equilibrium. We
next linearize the kinetic equation using the ansatz
Nα ¼ nα þ δNα, where nα is the quasiequilibrium distri-
bution and δNα is a deviation from a local equilibrium, see
SM [41], Sec. II.1 (for bosons) and Sec. III.2 (for fermions).
To determine the heat conductivity the linearized kinetic
equation should be solved for δNα with the temperature
gradient introduced into nα. In either the fermionic or
bosonic approach the energy current can then be com-
puted as

JαðωÞ ¼
Z

ðdqÞuαqωα
qδNαðqÞ ð4Þ

where for fermions

ωF
q ¼ �uqþ q2=2m�; uFq ¼ �uþ q=m�: ð5Þ

In Eq. (5) the � sign refers to the right and left movers;
ðdqÞ≡ ðdq=2πℏÞ and we set ℏ ¼ 1 through the Letter. The
explicit formula for the effective mass m� is given in the
SM [41], Eq. (1.5).
Before discussing the relaxation of fermionic and

bosonic modes in more detail, we note that the model
Eq. (1) as stated preserves, apart from the charge con-
servation, also the difference of the number of right- and
left-moving fermions. In the bosonic language this corre-
sponds to the conservation of the total momentum of the
bosonic excitations [42–45]. Correspondingly, the linear-
ized collision integral (both in the fermionic and bosonic
formalisms) has a zero mode that gives rise to a ballistic
transport of heat [46]. In a more accurate description of the
electronic fluid the chiral branches merge at the bottom of
the energy band enabling the equilibration of the number of
left and right fermions. Within the bosonic description this
process corresponds to the umklapp scattering. The asso-
ciated time scale is exponentially long [42–45]

τ−1U ∼ T3=2ϵ−1=2F e−ϵF=T: ð6Þ
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Here ϵF ∼mv2F is an ultraviolet energy scale and we
omitted a nonuniversal numerical coefficient that is deter-
mined by interaction strength and by details of the spectrum
at the bottom of the band. The contribution of the (almost)
zero mode associated to the conservation of the bosonic
momentum can then be extracted either in a fermionic or
bosonic framework [47,48],

σbalðωÞ ¼ π

3

uT
iωþ τ−1U

: ð7Þ

At ωτU ≫ 1, σbalðωÞ is purely imaginary and does not
contribute to the dissipative real part of the total thermal
conductance. In the opposite limit, ωτU ≪ 1 the contribu-
tion of σbalðωÞ becomes a (large) frequency-independent
constant, σbal ¼ πτUuT=3.
Let us now turn to the analysis of the relaxing modes in

the kinetic Eq. (3). Employing the relaxation-time approxi-
mation for its solution we find

ReσBðωÞ ≃ T4l4

u2
Re

Z
T=u

0

ðdqÞ
τ−1B ðqÞ − iω

; ð8Þ

for the bosonic and

ReσFðωÞ ≃ T2

m2�u2
Re

Z
T=u

0

ðdqÞ
τ−1F ðqÞ − iω

; ð9Þ

for the fermionic representation of the theory, respectively,
see SM [41], Sec. 2.2, 3.2, and 3.3 for details. In Eqs. (8)
and (9), τBðqÞ and τFðqÞ denote the relaxation times for the
bosons and fermions. Note, that the prefactors in Eqs. (8)
and (9) match at T ¼ TFB, which is a manifestation of
Bose-Fermi duality [34]. One thus might think that for T >
TFB only bosonic excitations are relevant, and for T < TFB
only fermionic ones. However, this is not true. As we
discuss below, the bosonic lifetime τBðqÞ diverges in low q
limit, while τFðqÞ remains constant. This makes the two
channels of heat transport profoundly different: the bosonic
one always dominates the low-frequency thermal conduc-
tivity, irrespectively of the relation between T and TFB.
Equations (8) and (9) represent contributions of bosonic

and fermionic quasiparticles to the thermal conductivity.
Thus, taking into account also the ballistic contribution σbal

discussed above, we approximate the total thermal con-
ductivity of the electronic fluid by

σðωÞ ¼ σbalðωÞ þ σ0ðωÞ; ð10Þ

σ0ðωÞ ¼ σFðωÞ þ σBðωÞ ≃max ½σFðωÞ; σBðωÞ�: ð11Þ

To evaluate Eqs. (8) and (9), one needs to compute the
decay rates τ−1α ðqÞ for the fermionic and bosonic sectors
and q≲ T=u. Let us discuss the bosonic excitations first.
The simplest process of the bosonic decay obeying energy

and momentum conservation is shown in the left panel of
Fig. 1. It corresponds to the decay of one boson mode into
three and involves three bosons of the same chirality (e.g.,
right) and one boson of the opposite chirality [34,49]. The
resulting decay rate of subthermal bosons is given by (see
SM [41], Sec. 2.1; we omit numerical factors)

1

τBðqÞ
∼

8<
:

γq5=3T2

u5l
4
3m4�

; q < l2T3

u3 ;

γq2T3

m4�u6
; l2T3

u3 < q < T
u :

ð12Þ

Here γ ¼ α2ð1þ αÞ2 is a dimensionless interaction param-
eter related to the LL parameter K0 by the relation
α ¼ ð1 − K2

0=3þ K2
0Þ. The second line of Eq. (12) agrees

with Ref. [49]; the q5=3 scaling as in the first line was
obtained in the context of classical anharmonic chains
[50,51]. Note that the process shown in the left panel of
Fig. 1 can be interpreted as either a contribution to the
relaxation of one of the “majority” bosons (q) or of the
“minority” boson (p). Kinematic constraints imply p ≪ q.
As a result, the second contribution is exponentially sup-
pressed at large momenta of the relaxing boson. It however
dominates at small momenta and gives rise to the first line
in Eq. (12).
The process on the left panel of Fig. 1 can be viewed as a

decay of a right boson q into two other right bosons assisted
by a left mover p. The participation of the later is required
by kinematic constraints on the Fermi golden-rule level.
However, once the bosonic spectrum is broadened by some
relaxation processes, direct decay of a bosonic excitation
into two bosons of the same chirality becomes possible. In
particular, at q < qthr, where qthr is a threshold momentum,

qthr ¼
T1=3

um2=3
� l4=3

≡ T
u

�
TFB

T

�
2=3

; ð13Þ

the self-consistent treatment of the process shown in the
right panel of Fig. 1 provides the dominant contribution to
the relaxation of bosons [21,52,53] (see SM [41]),

q

q

p

q1

q2

q

q

q

q1

q2

q

FIG. 1. Left: Two-into-two bosonic scattering process involv-
ing three bosons of the same chirality and one boson of opposite
chirality. Right: The self-consistent decay process of one boson
into two, yielding the decay rate τ−1ðqÞ ∝ q3=2 for q < qthr.
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τ−1B ðqÞ ∼ q3=2m−1�
ffiffiffiffiffiffiffiffiffi
T=u

p
; q < qthr: ð14Þ

Summarizing the above analysis, we get

1

τBðqÞ
∼

8>>>>><
>>>>>:

q3=2
ffiffiffiffiffiffi
T=u

p
m�

; q < qthr;

γq
5
3T2

u5l
4
3m4�

; qthr < q < l2T3

u3 ;

γq2T3

m4�u6
; maxfl2T3

u3 ; qthrg < q < T
u :

ð15Þ

The last two regimes in Eq. (15) can be absent if the
corresponding momentum interval vanishes. Specifically,
for T < TFB the bosonic relaxation rate is always
given by the first line in Eq. (15). The intermediate
regime, qthr < q < ðl2T3=u3Þ, disappears at T < TH ¼
u3=4l−ð5=4Þm−ð1=4Þ

� .
As for the fermionic excitations, their lifetime was

discussed in Refs. [26,27,34,54]. It is given by

1

τFðqÞ
∼
γl4T7

m2�u8
; q <

T
u
: ð16Þ

Note that while the bosonic decay rate vanishes at q → 0
limit, the fermionic rate remains finite. This implies that the
low-frequency behavior of the thermal conductivity is
dominated by bosons.
We now calculate the real part of thermal conductivity as

a function of ω and T, using decay rates Eqs. (15) and (16).
For T < TFB, we find

σ0ðωÞ ∼

8>>><
>>>:

T11=3l4u−ð5=3Þm2=3
�

ω
1
3

; ω < γ3T23m2�l24

u20 ;

u5

γT4l4 ;
γ3T23m2�l24

u20 < ω < γl4T7

m2�u8
;

1
ω2

γT10l4

u11m4�
; γl4T7

m2�u8
< ω:

ð17Þ

For details of the calculations and results for T > TFB see
the SM [41], Sec. IV. To obtain the overall picture, the
“ballistic” contribution [Eq. (7)] should be taken into
account. At sufficiently high frequencies, ω ≫ 1=τU, the
ballistic mode associated with the conservation of the
momentum of bosonic excitations does not contribute to
the real part of σðωÞ and σðωÞ ≈ σ0ðωÞ. At τUω≲ 1 the
ballistic channel of the energy propagation becomes
gapped and contributes an exponentially large but fre-
quency-independent constant σbal ≃ πuTτU=3 to the ther-
mal conductance.
The resulting behavior of σðωÞ is shown in Fig. 2 for

T < TFB and in Figs. 1 and 2 of the SM [41] for T > TFB.
At ω < 1=τU, we observe a universal ω−1=3 scaling of
σðωÞ. This behavior can be traced back to the contribution
of bosons with momentum q ≪ T=u that have the relax-
ation rate specified in the first line of Eq. (15). It is
consistent with the predictions of the fluctuating

hydrodynamics. This is to be expected as strongly sub-
thermal bosonic modes correspond to classical density
waves of the hydrodynamic theory.
We now discuss the scaling of the dc conductivity with

the system size L. In contrast to the frequency scaling, the
contribution of the zero mode associated to the conserva-
tion of the bosonic momentum is always real. In fact at
scales shorter than LU the entire dc thermal conductance is
dominated by this ballistic contribution, σðLÞ ¼ πTL=6,
with the other modes providing only subleading correc-
tions. The situation changes in the limit L ≫ LU where the
contribution of the zero mode becomes a size-independent
constant, and nonzero modes start to be dominant.
As was found above, the thermal conductivity σðω → 0Þ

is governed by bosons. In this limit, the bosonic lifetime
diverges as power law τ−1ðqÞ ∝ qz. In our case z ¼ 3=2,
that is consistent with KPZ scaling [21]. The divergence of
the life time implies that bosons with momentum below
q < L−1=z propagate through the system almost ballisti-
cally. The contribution of these bosons to the thermal
conductance can be estimated as

GðLÞ ∼ L−1=z: ð18Þ

This implies that for z ¼ 3=2 the conductivity scales as
σðLÞ ¼ L1=3. Note that this is a manifestation of the Lévy-
flight character of the energy transport in the system,
cf. Ref. [17]. To find the corresponding Lévy-flight
distribution function, one needs to relate z to the Lévy-
flight parameter α. This can be done by comparing the
diffusion coefficient DE of the Lévy-flight process with
the thermal conductivity computed above. The thermal

Re ( )

T
11

3
–

1

3

T
T –2

u
u –1

T
11

3
–

1

3

T –4

T10 –2

B B B B F F

I II III IV V VI

u
–1

FIG. 2. ReσðωÞ at T < TFB. For each regime, the T and ω
scaling is shown. Labels F and B indicate whether the dominant
contribution comes from the fermionic or bosonic sector. In
regions II and III the contribution of the momentum zero mode
[Eq. (7)] is dominant, while other regions are dominated by finite
energy modes, Eq. (17). For lowest ω, region I, the ω−1=3

dependence translates into the L1=3 scaling of σðLÞ, analogous
to that obtained for classical fluids [16,17].
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conductance G is related to the energy diffusion coefficient
as G ¼ σ=L ∼DE=L. To estimate DE we compute

DE ¼ hx2i
t

∼
Z

L=u

0

dxx2x−α−1 ∼ L2−α; ð19Þ

where we used that the tails of the Lévy distribution
function at time t decay with distance as x−α−1t.
Comparing Eqs. (18) and (19), we obtain the following
relation between the exponent z controlling decay rate and
α of Lévy flight, 1 − α ¼ −z−1, so that the conductivity
scales as σ ∼ L2−α ¼ L1−z−1 . For z ¼ 3

2
, the Lévy parameter

α ¼ 5=3 and σðLÞ scales as L1=3. Note that the scaling in L
for the Lévy-flight regime can be obtained from the scaling
in ω by the replacement ω → u=L. The L1=3 scaling agrees
with the one found in classical fluids [16,17].
To summarize, we computed the thermal conductivity of

1D electronic fluids as a function of frequency ω, temper-
ature T, and system length L. For energy scales below
bosonic umklapp time, the momentum of bosonic and
fermionic fluids are separately conserved. The momentum
zero modes give rise to the ballistic heat conductivity
Eq. (7). This corresponds to purely imaginary σðωÞ and
results in the LL thermal conductance π2T=3h [47] for a
finite sample. The massive modes of the fermionic and
bosonic collision integrals contribute to the real part of the
heat conductivity, yielding subleading (in 1=L) corrections
to the thermal conductance. However, they may be detected
via measuring the real part of σðωÞ at ω > u=L. The real
part of σðωÞ exhibits several regimes. For temperatures T <
TFB it is determined by fermionic modes for not too low
frequencies, see regions V and VI in Fig. 2. At the lowest
frequencies, the conductivity is determined by low-momen-
tum bosonic modes, yielding σðωÞ ∝ ω−1=3. The length
dependence of the thermal conductance depends on the
relation between L and the bosonic umklapp length LU. For
L ≪ LU, the transport is ballistic, σðLÞ ∝ L, as expected
for LL. On the other hand, for L ≫ LU, we find
σðLÞ ∝ L1=3, as expected for a classical fluid [16,17].
We close by briefly discussing prospective research

directions. First, while our computations were done within
kinetic theory, these results can be found also within the
hydrodynamic approach. While for L > LU the hydro-
dynamic theory has three modes (particle-number, momen-
tum, and energy conservation), for L < LU the number of
modes is four, due to the additional zero mode discussed
above. In both regimes, kinetic coefficients are expected to
be anomalous. The hydrodynamic framework is particu-
larly convenient for computing scaling functions describing
heat conductivity and pulse evolution [55]. Second,
whereas our computations were done for a strictly 1D
system, we expect that an anomalous scaling of heat
conductance should hold also for other low-dimensional
quantum electronic fluids (quasi-1D and 2D geometries).

D. G. was supported by ISF (Grant No. 584/14) and
Israeli Ministry of Science, Technology and Space.

Note added.—Recently, a related preprint [56] appeared,
which addresses the same problem solely within the
fermionic approach. Results of Ref. [56] for σðωÞ match
ours in what concerns the “plateaus” II and V in Fig. 2 but
do not capture other regions, where σðωÞ is controlled by a
slow relaxation of bosonic modes.
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