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Recently, the subradiant states of one-dimensional two-level atom chains coupled to light modes were
found to have decay rates obeying a universal scaling, and an unexpected fermionic character of the
multiply excited subradiant states was discovered. In this Letter, we theoretically obtain the singly excited
subradiant states, and by eliminating the superradiant modes, we demonstrate a relation between the
multiply excited subradiant states and the Tonks-Girardeau limit of the Lieb-Liniger model which explains
the fermionic behavior. In addition, we identify a new family of subradiant states with correlations different
from the fermionic ansatz.
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To achieve controllable and deterministic photon-atom
interfaces for applications in quantum information process-
ing and quantum sensing, large atom ensembles may be
used to enhance the coupling to photons [1]. The photons
induce both coherent and dissipative atom-atom inter-
actions that yield collective phenomena of super- or
subradiance [2], wherein a collective excitation of the
atom ensemble decays faster or slower than individual
atomic excitations. While superradiance has been exten-
sively studied since the seminal work of Dicke [3],
subradiance of a large ensemble was observed only very
recently in cold atom clouds [4,5] and metamaterial arrays
[6]. Comprehensive theoretical tools for the subradiance are
still elusive [7–10] due to the complicated long-range
interactions and many-body features of the atomic ensem-
bles [11–13]. A one-dimensional (1D) chain of equally
spaced two-level atoms offers the simplest geometry to gain
insight in the collective decay mechanisms, and imple-
mentation of such chains coupled to nanofibers [14], 1D
waveguides [15–18], and the full vacuum electromagnetic
field in 3D free space [8,13,19–21] has attracted consid-
erable attention. Super- and subradiance phenomena are in
these systems supplemented by further interesting proper-
ties and applications such as atomic mirrors [22], photon
Fock state synthesis [23], enhancement of cooperativity
[24], and applications in quantum computation [25].
Recently, the subradiant states of such 1D chains of N

qubits in 3D free space and coupled to 1D waveguide were
numerically found to have a series of seemingly universal
properties [8–10]: in the one-excitation sector where only
one of the N atoms is excited, if we sort all eigenstates (to
be elaborated) by increasing decay rates with integer labels
from ξ ¼ 1 to ξ ¼ N, the most subradiant states (ξ ≪ N)
have decay rates γξ ∝ ξ2=N3. In the multiexcitation sectors,
the most subradiant states have a fermionic character,
e.g., a subradiant state with two excitations is given by

jF1;2i ∝
P

i<jðc1;ic2;j − c1;jc2;iÞjei; eji, built from subra-
diant states jψ1ð2Þi ¼

P
ic1ð2Þ;ijeii in the one-excitation

sector, where jeii (jei; eji) represents the state with the ith
(ith and the jth) atom excited to jei while all other atoms
are in the ground state jgi. The decay rate of jF1;2i is the
sum of the decay rates of jψ1i and jψ2i. The infidelity of
the fermionic ansatz jF1;2i to exact numerical results scale
as N−2 and N−1 for two different classes of states [9].
It is intriguing why these properties appear for both the

infinite range atom-atom interactions mediated by the 1D
guided fields [9,10], and the long-range (∼1=r) or short-
range (∼1=r3) interactions mediated by the 3D free-space
field [8,10]. A thorough theoretical understanding is
needed to guide further experimental studies and applica-
tions of subradiance. In this Letter, we provide such
understanding based on the theoretical treatment of the
physics summarized in Fig. 1.

FIG. 1. Outline of the theory: the imaginary part of the effective
atomic Hamiltonian, HI

eff , identifies the superradiant (j�k1Di)
and dark subspaces of states (left panel), coupled perturbatively
by HR

eff to produce the subradiant modes with decay rates
γξ ∝ ξ2=N3ðξ ≪ NÞ. The Holstein-Primakoff transformation bo-
sonizes the super- and subradiant modes and introduces a
coupling (Q and Q†) between them (right panel). The coupling
effectively yields a strong interaction Vsub among the multiply
excited subradiant modes leading to the formation of states with
fermionic character.
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Spin model.—For light-matter interactions where the
Markovian approximation is applicable, we can eliminate
the light modes to obtain a master equation describing only
the atoms [26]. The master equation is equivalent to a
Monte Carlo wave function formalism [27], where the
atomic state evolves stochastically under quantum jumps
and deterministically under H ¼ H0 þHeff, where H0 is
the bare Hamiltonian of the atoms and the non-Hermitian
Heff describes both coherent and dissipative atom-atom
interactions mediated by the vacuum field. The right
eigenstates of H, or equivalently of Heff [8], in each
manifold of states with any given number of atomic
excitations have decay rates that are twice the imaginary
parts of the corresponding right eigenvalues. We focus our
analysis on the qubit chain coupled to a 1D waveguide, but
our treatment provides sufficient insight to also account for
the case of coupling to the 3D vacuum field. For an atom
chain coupled to a 1D waveguide, we have [9,22]

Heff ¼ −
i
2
Γ1D

XN
m;n¼1

eik1Djzm−znjσ†mσn; ð1Þ

where Γ1D is the decay rate of a single atom coupled to the
waveguide [22], k1D is the wave number of the waveguide
mode resonant with the atomic transition, and σm ¼ jgimhej
acts on the mth atom. We assume the atoms are equidis-
tantly spaced by d. For convenience, we shall denote
Heff ¼ HR

eff − iHI
eff .

One-excitation sector.—The eigenstates of HI
eff divide

the one-excitation sector into a two-dimensional super-
radiant subspace spanned by the Bloch states j�k1Di ¼
N−1=2 PN

m¼1 e
�ik1Dzm jemi with eigenvalue NΓ1D=4 and an

(N − 2)-dimensional dark space with an eigenvalue of 0;
see Fig. 1. The dark states acquire weak (subradiant) decay
rates because of their admixture of superradiant states
induced by the perturbation from HR

eff .
While the perturbation view is informative, a more direct

approach to the subradiant states applies the following
exact result for the Bloch states jki (k ≠ �kD)

Heff jki ¼ ωkjki − i
Γ1D

2
ðgkjk1Di − hkj − k1DiÞ; ð2Þ

where ωk ¼ ðΓ1D=4Þ
P

ϵ¼� cot½ðk1D þ ϵkÞd=2�, and the
“tails” gk ¼ ½eiðk−k1DÞz1 �=½1 − eiðk−k1DÞd� and hk ¼
½eiðkþk1DÞzN �=½e−iðkþk1DÞd − 1�. It follows that a superposition
of two degenerate states, jki and j − ki, is an eigenstate of
Heff with eigenvalue ωk and has no tails if k is a solution to
the equation gkh−k ¼ g−khk. This equation has only sol-
utions for complex values of k. In the regimes k ≈ 0 or
�π=d (center or edges of the first Brillouin zone), suppos-
ing kξ ¼ 0þ δξ and kξ ¼ −π=dþ δξ, respectively, we find
to the order of N−2

δξ ¼
ξπ

Nd
×

�
1 − i 1

N cotðk1D2 dÞ; k ≈ 0

1þ i 1
N tanðk1D2 dÞ; k ≈ −π=d;

ð3Þ

with ξ ¼ 1; 2; 3;…, ξ ≪ N. Note that Eq. (3) amounts to an
1=N2-order imaginary correction to the real Bloch wave
number.
Next, we substitute Eq. (3) into the expression for ωk,

which is parabolic near k ≈ 0 and�π=d, i.e., ωk ∝ δ2ξ . Then
the imaginary corrections directly yield the ξ2=N3 scaling
of the decay rates [9]

γξ ¼ Γ1D
π2

2

ξ2

N3
×

8<
:

cos2ðk1Dd=2Þ
sin4ðk1Dd=2Þ ; k ≈ 0

sin2ðk1Dd=2Þ
cos4ðk1Dd=2Þ ; k ≈ −π=d:

ð4Þ

The eigenstates are written as

jϕkξi ∝ g−kξ jkξi − gkξ j − kξi

¼ 1ffiffiffi
2

p ðjkð0Þξ i − j − kð0Þξ iÞ þO

�
ξ

N

�
; ð5Þ

where kð0Þξ ¼ ξπ=ðNdÞ or −π=dþ ξπ=ðNdÞ.
Universality.—The ξ2=N3 scaling has also been numeri-

cally found for 1D atom chains coupled to 3D free-space
modes [8–10], where the effective Hamiltonian H3D;eff is
determined by the vacuum Green’s dyadic tensor [28].
Fourier transformation of the Green’s tensor reveals a
hidden similarity between the coupling to the 1D and
3D quantized radiation fields: H3D;eff can be written as
weighted integrals of terms resembling Heff with real-
valued k1D ∈ ½0; k0� and imaginary-valued k1D ∈ ½i0;þi∞�

H3D;eff ¼ −i
3γ0
4k0

Z
k0

0

dk̃
2π

ρþðk̃Þ
XN
m;n¼1

eik̃jzm−znjσ†mσn

−
3γ0
4k0

Z þ∞

0

dk̃
2π

ρ−ðk̃Þ
XN
m;n¼1

e−k̃jzm−znjσ†mσn; ð6Þ

where γ0 is the spontaneous emission rate and k0 is the
resonant wave number. If the atoms are polarized parallel to
the chain, ρ�ðk̃Þ ¼ 2πð1 ∓ k̃2=k20Þ and the atom-atom
interaction is short-range (∼1=r3). If the atoms are polar-
ized transverse to the chain, ρ�ðk̃Þ ¼ πð1� k̃2=k20Þ and the
atom-atom interaction is long-range (∼1=r).
In combination with the two exact features of our

analytical results for Heff, (1) the leading order solutions
of δξ and jϕkξi are independent of the values of k1D; see
Eq. (5). (2) the proportionality δξ ∝ ξ and the parabolic
dispersion relation ωk ∝ δ2ξ hold to order N

−2, for all values
of k1D. This explains the universality of the ξ2=N3 scaling:
feature 1 implies that the leading order eigenstates of Heff ,
shown in Eq. (5), are shared simultaneously by all terms
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integrated in H3D;eff , and thus by the full H3D;eff due to
linearity. Feature 2, hence implies that the corresponding
decay rates, scaling as ξ2=N3, also apply to the subradiant
states of H3D;eff . The prerequisite is that HI

3D;eff must have
dark states with k ≈�π=d. Hence, we require k0 < π=d
which implies that the ensemble is only subradiant in the
3D field if the atom-atom distance is less than half the
resonant wavelength [8,13].
Subradiant multiply excited states.—When the number of

atomic excitations ne ≪ N, the leading order Holstein-
Primakoff (HP) approximation [29] usually applies and
one may replace σ†mσn of Eq. (1) with the bosonic operators
b†mbn and obtain a quadratic bosonic Heff . It works well for
the superradiant modes with wave number�k1D. But for the
subradiant multiply excited states, the bosonic creation
operators prepare exchange symmetric combinations of
subradiant one-excitation states with decay rates scaling
as N−1 [8,9] which is much larger than the numerically
observed N−3 scaling [8–10]. Instead, the numerical results
were found to favor fermionic exchange antisymmetric
combinations of the subradiant one-excitation states [8–10].
This somewhat surprising result inspires a closer scrutiny

of theHP transformation. Including second order corrections
due to saturation, the HP transformation reads σm¼
ð1−b†mbm=2Þbm so that we can write HI

eff¼HSRþQþQ†

with the quadratic term HSR ¼ NΓ1D=4
P

ϵ¼� b†ϵk1Dbϵk1D
and the quartic term

Q ¼ −
Γ1D

8

X
ϵ¼�

X
p;q

b†ϵk1Db
†
pþq−ϵk1Dbpbq: ð7Þ

Here, b†k ¼ N−1=2P
me

ikzmb†m and the summation over wave
number is taken over an orthonormal basis fjkigk containing
j � k1Di. The quadratic term HSR has a prefactor N times
larger than those of Q and Q†, but to assess their influence,
we should take account of not only the prefactors but also the
magnitudes of the operator terms. ForHSR, the magnitude of
b†ϵk1Dbϵk1D can be estimated by its typical expectation value
over the relevant Hilbert space, i.e., the subradiant states.
Reasonably, one may expect that a subradiant state

contains no excitation of superradiant modes, i.e., typically
hb†ϵk1Dbϵk1Di ≈ 0. Thus, the magnitude ofHSR is suppressed.
Meanwhile, Eq. (7) shows that Q annihilates a two-boson
state b†pb

†
qj∅i, which is dark with respect to HSR, and

generates a superradiant two-boson state b†ϵk1Db
†
pþq−ϵk1D j∅i

where j∅i denotes the vacuum state. This demonstrates that
the saturation correction to the first order HP transforma-
tion plays a significant role even in the low excitation
regime (ne ≪ N), in contrast to its role in many other
applications.
An effective theory for how Q couples the dark states to

superradiant states and hereby determines their subradiant
behavior is illustrated in the right panel of Fig. 1. The effect

of Q and Q† is distilled by eliminating the superradiant
states, in a manner similar to the adiabatic elimination of
excited state manifolds to restrict the effective dynamics of
quantum systems to their ground state manifold [30].
Note that the subset of superradiant states with only a

single excitation of the superradiant modes and thus the
eigenvalue (decay rate) NΓ1D=4 has the strongest coupling
to the dark or subradiant states. We hence disregard the
coupling to other superradiant states and the effective
coupling between the subradiant states reduces to Vsub ¼
ð4=NΓ1DÞPDSQ†PSRSQPDS, with projection operators
PDSðSRSÞ on the dark and superradiant spaces, respectively.
To evaluate this expression, we use the operator relation
that ðbp0þq0−ϵ0k1Dbϵ0k1DÞðb†ϵk1Db

†
pþq−ϵk1DÞ¼δϵ;ϵ0δp0þq0;pþq, i.e.,

no population of the superradiant two-boson modes within
the dark or subradiant space. Finally, we obtain

Vsub ¼
1

8N
Γ1D

X
p;q;k

b†−pþqþkb
†
pbqbk

¼ 1

8
Γ1D

XN
m¼1

ðb†mÞ2ðbmÞ2: ð8Þ

That is, Vsub induces decay with rate OðΓ1DÞ of nominally
subradiant states having more than a single HP boson
excitation at the same site.
In the absence of Vsub, approximate multiply excited

states are created by the operators b†ξ ¼
P

mhemjϕkξib†m,
with jϕkξi the one-excitation eigenstates Eq. (5) of Heff .
Since Vsub cannot be treated as a perturbation, we study the
effective Hamiltonian H ¼ 1

2

P
ξ γξb

†
ξbξ þ Vsub, where

only the most subradiant states (ξ ≪ N) are included in
the sum. In the continuous limit [28], H can be written as
the second-quantized form of the Hamiltonian

H ¼
Xne
i¼1

�
−∂2

xi

2m�
þ VðxiÞ

�
þ 2cLL

Xne
i<j¼1

δðxi − xjÞ; ð9Þ

where cLL ¼ dΓ1D=8 and VðxiÞ is a 1D box potential for
bosons in the interval ½0; Nd� with one-excitation eigen-
states jϕkξi given by Eq. (5). The observation behind
Eq. (9) is that the ξ2=N3 scaling of γξ takes the form of
a kinetic energy γξ ¼ k2ξ=ð2m�Þ when k ≈ 0; or the kinetic
energy in a gauge field γξ ¼ ðkξ þ π=dÞ2=ð2m�Þ when
k ≈ −π=d. With the parametrization of the model,
the effective mass in the kinetic energy term reads
m� ¼ ξ2π2=ðN2d2γξÞ ∝ N.
We recognize Eq. (9) as the Lieb-Liniger model [31]

originally proposed for 1D gases of hard-core bosons. As
the effective mass m� diverges in the large N limit, the
kinetic energy–like part of Eq. (9) vanishes. This implies
that Eq. (9) reaches the Tonks-Girardeau regime [32,33] of
the Lieb-Liniger model, where the eigenstates of H can be
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obtained via a fermion-boson mapping [33,34]: for a
free fermion model described by the HamiltonianP

ξ
1
2
γξf

†
ξfξ, where f†ξ ¼

P
mhemjϕξif†m, we write down

its eigenstates (e.g., two-fermion states) f†ξ1f
†
ξ2
j∅i, and

replace f†mf
†
n with signðn −mÞb†mb†n, where signðn −mÞ

is necessary to ensure the consistency with the fermionic
commutation relation. This yields a fermion-like
bosonic state jFξ1;ξ2i ¼

P
m<n½ϕkξ1

ðzm Þϕkξ2
ðzn Þ−

eiφϕkξ2
ðzmÞϕkξ1

ðznÞ�b†mb†nj∅i (eiφ ¼ 1 is introduced for

later convenience). Because b†mb
†
nj∅i ¼ jem; eni, we re-

cover the fermionic ansatz of the two-excitation sector
[8–10]. As a direct consequence of their representation as
noninteracting fermions, the decay rates of the most
subradiant multiply excited states are merely the sum of
the decay rates of their one-excitation constituents, e.g.,
γξ1 þ γξ2 . This explains the numerical observations of
Refs. [8–10]. The above mapping also applies to states
with more excitations [33,34].
For a finite atom chain, m� is finite and Eq. (9) deviates

from the Tonks-Girardeau limit; hence the fermionic ansatz,
e.g., the two-excitation state jFξ1;ξ2i, deviates slightly from
the numerical eigenstates denoted by jψnum

ξ1;ξ2
i. The deviation

quantified by the infidelity 1 − jhFξ1;ξ2 jψnum
ξ1;ξ2

ij2, is numeri-
cally found to scale as N−2 when both components, jϕkξ1

i
and jϕkξ2

i, come from the same branch of the one-excitation

subradiant states, i.e., kξ1 ; kξ2 ≈�π=d (or both ≈0); other-
wise, the infidelity scales as N−1 (when kξ1 ≈�π=d and
kξ2 ≈ 0) [9]. These behaviors can also be explained from
the Lieb-Liniger model of Eq. (9). The fermion-boson
mapping is not exact and the phase factor eiφ introduced

above deviates from unity by a factor in the form of
ðkξ1 − kξ2Þ=ðm�cLLÞ [31]. Because kξ1 − kξ2 is OðN−1Þ or
≈π=d in the two cases considered, whilem�cLL scales asN,
their ratio scales exactly in the same manner as the numeri-
cally observed infidelities [9]. Larger discrepancies with the
fermionic ansatz are detectable when the decay rates
increase.
Universality.—The mapping to the Lieb-Liniger model

and the Tonks-Girardeau gas can also be extended to the 1D
atomic chain coupled to 3D free-space modes described by
Eq. (6). Here HI

3D;eff possesses short-lived eigenstates jk̃i
with k̃ ∈ ½−k0; k0� and different decay rates γk̃. Each of
them will contribute to Vsub a term with prefactor γk̃=N

2.
Hence, we have Vsub ∝

P
k̃ γk̃=N

2 ¼ γ0=N, similar to the
coefficient in the first line of Eq. (8). Because the ξ2=N3

scaling decay rates apply in the one-excitation sector of the
3D free space case, the fermionic ansatz also applies here.
Because only the branch of subradiant states with k ≈
�π=d appear here, the pertaining N−2 scaling applies to the
infidelities of all states given by the fermionic ansatz. This
matches the numerical results [8].
Conclusion and discussion.—In this Letter, we have

developed a theory to explain the ξ2=N3 scaling of
subradiant decay rates and the fermionic behavior of
multiply excited subradiant states identified in numerical
calculations on 1D atom chains coupled to both 1D and 3D
radiation reservoirs [8–10]. We find that the universal
ξ2=N3 scaling results from a parabolic dispersion relation
of the atomic excitation and imaginary corrections of the
Bloch quasi-momentum eigenstates of the non-Hermitian
Hamiltonian. For multiply excited systems, quartic correc-
tions to the HP expansion of the effective spin Hamiltonian
for the atom chain dominate the coupling of the subradiant
states and lead to a formulation equivalent to the Lieb-
Liniger model of a 1D bosonic quantum gas in the Tonks-
Girardeau regime [32,33]. The fermionic ansatz solution of
that problem explains the decay rates and the properties of
the solutions found in Refs. [8,9]. There is a high current
interest and many potential applications of subradiance
[22–25] and the analytical findings presented here may
inspire further study of subradiance in light-matter inter-
actions of more complex geometries, e.g., systems with
higher dimensional atom arrays [35], chiral waveguides
that break the parity symmetry [36] and setups with
topological effects [37,38].
Let us conclude by discussing a remaining theoretical

issue. We recall our effective separation of the Hamiltonian
into an interaction term, Vsub, based on HI

eff and an
expansion on subradiant eigenmodes bξ for which HR

eff
contributes the decay rates γξ. Like the numerical calcu-
lations, a more rigorous analytical approach should incor-
porate HR

eff and HI
eff on an equal footing. The fact that our

separate treatment applies may be understood from the
perturbation view. The leading order approximation of the

FIG. 2. (a) The two-excitation eigenstates of the system with
k1D ¼ 0.2π=d and N ¼ 20 are sorted by increasing decay rates.
The bars show the maximal fidelity that a fermionic ansatz can
achieve for each eigenstate. The fermionic ansatz fits a broad
range of the most subradiant states while a few exceptional states
(the dips in the fidelity, e.g., state No. 7) show distinct non-
fermionic behavior. (b) Position distributions of the atomic
excitations, jhψ1ð7Þjem; enij2 with mðnÞ ¼ 0; 1;…; 19 of a typical
fermionic subradiant state, jψ1i (upper panel) and the non-
fermionic state jψ7i (lower panel). The lower panel feature at
jzm − znj ≈ 2d indicates that jψ7i supports dimerlike bound
excitations.
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subradiant states are the dark states of HI
eff . They are also

approximate eigenstates of HR
eff when restricted to the most

subradiant states. It means that the fermionic ansatz, as the
leading order approximation, is shared by both HI

eff and
Heff . Therefore, analyzing Vsub from the simpler HI

eff is
sufficient to capture the salient fermionic behavior. This is
also verified by a direct construction of the fermionic ansatz
without using the HP transformation, for bothHI

eff andHeff
[28]. Interestingly, we find that the fermionic ansatz does
not exhaust all the most subradiant eigenstates. For a
medium-size ensemble of N ¼ 20 atoms, we obtained
numerical eigenstates of Heff with very low fermionic state
fidelity. The subradiant states of this different character
have well-defined “center of mass”wave number, and well-
defined spatial separation, as illustrated in Fig. 2(b). Further
discussion of these states is beyond the scope of this Letter,
but may be of interest for future work possibly together
with the interesting prospects for studying quantum fluc-
tuations [39–41] in the Tonk-Girardeau gas theory by
detection of the excited state correlations among atoms
in a subradiant chain.
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