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We present the amplitude for classical scattering of gravitationally interacting massive scalars at third
post-Minkowskian order. Our approach harnesses powerful tools from the modern amplitudes program
such as generalized unitarity and the double-copy construction, which relates gravity integrands to simpler
gauge-theory expressions. Adapting methods for integration and matching from effective field theory, we
extract the conservative Hamiltonian for compact spinless binaries at third post-Minkowskian order. The
resulting Hamiltonian is in complete agreement with corresponding terms in state-of-the-art expressions at
fourth post-Newtonian order as well as the probe limit at all orders in velocity. We also derive the scattering
angle at third post-Minkowskian order and find agreement with known results.
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Introduction.—The recent discovery of gravitational
waves at LIGO/Virgo [1] has launched an extraordinary
new era in astronomy, astrophysics and cosmology. Given
expected improvements in detector sensitivity, high-preci-
sion theoretical predictions from general relativity will be
crucial. Existing theory benchmarks come from a variety
of approaches (see also Ref. [2] and references therein),
including the effective one-body formalism [3], numerical
relativity [4], the self-force formalism [5], and perturbative
analysis using post-Newtonian (PN) [6-10], post-
Minkowskian (PM) [11-13], and effective field theory
(EFT) [14] methods.

The past decade has also witnessed immense progress in
the study of scattering amplitudes, where understanding
mathematical structures within gauge theory and gravity
has yielded new physical insights and efficient methods for
calculation. In particular, the Bern-Carrasco-Johansson
(BCJ) color-kinematics duality and associated double copy
construction [15] allow multiloop gravitational amplitudes
to be constructed from sums of products of gauge-theory
quantities. This has yielded a variety of new results in
supergravity (see Ref. [16] for recent results). The BCJ
construction is intimately tied to the Kawai-Lewellen-Tye
(KLT) relations [17], which relate tree amplitudes of closed
and open strings.
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In this Letter, we apply modern amplitude methods to
derive the classical scattering amplitude for two massive
spinless particles at O(G?) and to all orders in the velocity,
i.e., at the third post-Minkowskian (3PM) order. We use
generalized unitarity [18] to construct the corresponding
two-loop integrand from tree amplitudes of gravitons and
massive scalars, obtained straightforwardly from the dou-
ble-copy construction. While the double copy introduces
dilaton and antisymmetric tensor degrees of freedom [19],
which are absent in pure Einstein gravity, we remove these
unwanted states efficiently by restricting the state sums in
unitarity cuts to gravitons alone. As we will show, we can
calculate in strictly D =4 dimensions for the classical
dynamics, where spinor helicity variables [20,21] dramati-
cally simplify the required tree amplitudes. The viability of
working in D = 4 offers optimism for extending our results
to higher orders.

Afterwards, we integrate the two-loop integrand via a
procedure adapted from EFT, in which energy integrals are
evaluated in the potential region via residues before
performing spatial integrations [22]. Using EFT matching
[22,23] we then derive the 3PM conservative Hamiltonian
for compact spinless binaries. We show that the 4PN terms
in our Hamiltonian are, up to a coordinate transformation,
physically equivalent to corresponding terms in state-of-
the-art results. We also verify that our result agrees in the
probe limit with the Hamiltonian for a test body orbiting a
Schwarzschild black hole to 3PM order. Finally, we derive
a compact expression for the 3PM scattering angle in terms
of amplitude data.

Double copy and unitarity.—Dynamics at 3PM order is
encoded in the two-loop scattering amplitude for two
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FIG. 1. Unitarity cuts needed for the classical scattering
amplitude. The shaded ovals represent tree amplitudes while
the exposed lines depict on-shell states. The wiggly and straight
lines denote gravitons and massive scalars, respectively.

massive, gravitationally interacting scalars. Our calculation
begins with a construction of the corresponding two-loop
integrand via generalized unitarity. Because we are inter-
ested in classical scattering, we need not assemble the full
quantum-mechanical integrand. Rather, as emphasized in
Refs. [22-24], the classical potential only receives con-
tributions with a single on-shell matter line per loop and
with no gravitons starting and ending on the same matter
line. For this reason we focus solely on the unitarity cuts
shown in Fig. 1.

We obtain the tree amplitudes in the unitarity cuts via
two methods. In the first approach, we work in general D
space-time dimensions. Exploiting color-kinematics dual-
ity [15], we derive gravitational amplitudes straightfor-
wardly from simpler gauge-theory amplitudes by replacing
color factors with corresponding kinematic factors. For the
unitarity cuts of the classical limit of the two-loop scatter-
ing amplitude, the reference momenta that complicate
projection onto graviton physical states can be eliminated,
simplifying the calculation [25]. The primary purpose of
our D-dimensional construction is to confirm explicitly the
completeness of our second method, where we work in
strictly D = 4 so as to benefit from very simple expressions
for gauge-theory amplitudes in terms of spinor helicity [20]
variables. We then build the two corresponding gravita-
tional amplitudes via the KLT relations [17]. At two loops,
both approaches are efficient, but at higher loops, helicity
amplitudes offer a much more compact starting point.

For concreteness, consider the first generalized unitarity
cutin Fig. 1, which we refer to as CH*" and is comprised of
products of four 3-point and one 4-point amplitudes. Since
four-point tree amplitudes are already very simple there is
little computational advantage to imposing the on-shell
conditions on matter lines. Thus, we replace the pairs of
three-point amplitudes at the top and bottom of the cut with
four-point amplitudes and then impose the matter cut
conditions at the end. The resulting iterated two-particle
cut is then

C22 = "My(2°.—8.7.3)M,(-5.6.-7.8)

states

x M, (1%,5,-6,4%), (1)

where M, denotes the tree-level four-point amplitude for
gravity minimally coupled to two massive scalars denoted
here by legs 1°, 2%, 3°, and 4°. In this cut, legs 1°, 4° have

mass m; while legs 2%, 3° have mass m,. All momenta in
each tree amplitude are taken to be outgoing. The sum runs
over graviton states for legs 5, 6, 7, and 8, where the minus
signs on the labels indicate reversed momenta.

The four-point gravity tree amplitudes needed in the cuts
are obtained from gauge-theory ones via the field-theory
limit of KLT relations [17],

My(1,2,3,4) = —ispAg(1,2,3,4)A4(1,2,4.3). (2)

where the A, are tree-level color-ordered gauge-theory
four-point amplitudes and s;; = (p; + p;)*, working in
mostly minus metric signature throughout. Strictly speak-
ing, the KLT relations apply only to massless states.
However, they can be applied here by interpreting the
scalar masses, in the sense of dimensional reduction, as
extradimensional momentum components. While we have
not included coupling constants, these are easily restored at
the end of the calculation by including an overall factor of
(87G)?, where G is Newton’s constant.

In terms of the spinor-helicity conventions of Ref. [21],
the independent tree-level gauge-theory amplitudes needed
in Eq. (1) are

m2
Ag(15,27,3% 4%) = i<213[>2t311,
2
Ay(195,2+ 3, 45) = li'jt'i]
o gy (12)*
AT 203040 = i s oy Ay
A(17,27,37 4% =i {3 (3)
weemeTe (12)(23)(34)(41)”

where 7;; = 2p;p; and the & denote gluon helicities.

The dilaton and antisymmetric tensor states are removed
from unitarity cuts by correlating the gluon helicities on
both sides of the double copy. The unwanted states
correspond to one gluon in the double copy of positive
helicity and the other of negative helicity. An internal
graviton state is obtained by taking the corresponding
gluons in the KLT formula in Eq. (2) to be of the same
helicity.

Using spinor evaluation techniques, it is straightforward
to obtain a compact expression for the iterated two-particle
cut in Eq. (1) (e.g., see Ref. [26]). Imposing cuts on the
matter lines, as indicated in the first unitarity cut of Fig. 1,
further simplifies it and gives C'"t, We find

1 1
CH—cut:2i< + )
(ps—ps)*  (ps+p7)?

1
X <s%3m‘1‘m‘2‘+72 (5?4—0?—1—60?5?)), (4)

$23i—12
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where we have defined

1
2 )
& = —st(tlsfzs — t1at58)°, OF = & — mim3si,tk,
) 1
&= —323 (117025 — tiotsy — $23(t17 + 157)]2,
O3 = & — mim3s3;13;. (5)

The simplicity of this expression is a reflection of the
double-copy structure: the same building blocks appear in
the simpler corresponding gauge-theory cut.

The spurious double pole in s,; can be explicitly
cancelled by adding terms proportional to the Gram
determinant formed from the five independent momenta
at two loops that vanishes in D = 4. In fact, the expression
derived from the D-dimensional approach is automatically
free of such spurious singularities. While these Gram
determinants contribute quantum mechanically, we have
checked explicitly that they vanish in the classical limit.
This is not accidental—such terms are of the wrong form to
generate the required log(s,3) needed to contribute to the
classical 3PM amplitude (see Ref. [25] for details).

The remaining two independent generalized unitarity
cuts in Fig. 2 are more complicated because they require
five-point tree amplitudes with two massive scalar legs. The
four-dimensional input gauge-theory amplitudes are simple
to compute using modern methods (e.g., see Ref. [27]). For
our D construction we obtain a BCJ representation,
allowing us to express the gravity cuts directly in terms
of local diagrams. The particular representation was chosen
such that we can ignore the reference momenta when
projecting the internal states into gravitons. Further details
will be given elsewhere [25].

To facilitate integration, we merge the cuts into a single
integrand whose cuts match those in Fig. 1. This is achieved
using an ansatz in terms of eight independent diagrams with
only cubic vertices displayed in Fig. 2. The diagrammatic
numerators are polynomials of the appropriate dimension
exhibiting the symmetries of the corresponding diagram.
Their coefficients are then fixed via the method of maximal
cuts [28], whereby cuts of the integrand are constrained to
match the known ones. This approach is sufficient for the

Y X7
< ¥ X

FIG. 2. The eight independent diagrams showing the propaga-
tor structure of integrals from which the classical contributions
are extracted.

Integration.—Our method of integration follows
Ref. [22]. For convenience, we give a short summary here,
leaving details to Ref. [25]. Terms in the integrand take the
form,

numerator

7= , (6
graviton propagators x H w? -k} —m? (6)

where i labels each matter line, which has energy w,, spatial
momentum k;, and mass m;. The matter propagators can be

factored into particle and antiparticle poles, w; + \/k? + m>.
We then express the integrand as Z = N x [[;(1/z;),i.e.,in

terms of the particle poles z; = w; — \/k? +m? and an
effective numerator A that absorbs the rest of the integrand.

Following the procedure outlined in Ref. [22], we first
evaluate the energy integrals. At two loops, i.e., 3PM order,
we integrate over two independent combinations of ener-
gies, w and @', in the potential region. As we will prove in
detail in Ref. [25], the result is

- do do’
7 —wﬂI(a),w’)ZZSi,' Res Z(w, '), (7)

2n 2w o ’a)ij,w;j
where the sum runs over distinct pairings (i, j) of matter
poles and z; = z; = 0 when (0, ®') = (w;;, »};). Here S;;
is a calculable symmetry factor whose sign and magnitude
depend on the topology of the cut graph. Note that the
residue for an (i, j) pairing will vanish if there are no values
of w and @' for which z; = z; = 0.

The resulting quantity Z depends on two independent
spatial loop momenta. To integrate over them we employ
dimensional regularization to deal with ultraviolet divergen-
ces stemming from the renormalization of delta function
contact interactions, which do not contribute classically. Due
to the localization on energy residues, 7 is a complicated,
nonpolynomial function of three-dimensional invariants
involving square roots. Nevertheless, we can series expand
7 inlarge m, 2, yielding polynomials of kinematic invariants,
which we can integrate at each order. After expanding, nearly
all the spatial integrals are simple bubbles for which there are
known analytic expressions [29]. The remaining integrals are
evaluated via integration-by-parts identities [30].

For diagrams free from infrared (IR) singularities gen-
erated by iterations of lower-loop graviton exchanges, we
have checked that our integrated results accord with several
standard methods in the Feynman integral literature,
including the Mellin-Barnes representation [29,31],
numerical integration via sector decomposition [32], and
differential equations [33] derived through integration-
by-parts reduction [30,34]. The system of differential
equations omits integrals lacking support on the matter
pole residues that produce the classical contributions.

Amplitude and potential—The integration procedure
outlined above yields the conservative, i.e., real component
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of the 3PM amplitude generated by potential gravitons
order by order in the large-mass expansion. Combining an
explicit evaluation of this amplitude up to 7PN order with
knowledge of the pole structure of individual integrals and
exact, manifestly relativistic analytic results for certain
graph topologies, we conjecture a full, all orders in velocity
expression for the conservative 3PM amplitude (whose
uniqueness will be discussed in Ref. [25]):

~ 1G*Vm*log ¢*

M; 5 3 — 6v + 206v6 — 546% + 108v6°
6r°¢
48u(3 + 126* — 46*)arcsinh /%51
+4ve® —

o> —1
18uy(1 — 26%)(1 — 56°)
i)

N 873G m®
v

- 32m*% (1 = 26%)3F,), (8)

[37(1 —262)(1 = 56%)F,

where the log scale dependence is absorbed into a delta-
function ultraviolet counterterm. Here we use center-of-
mass coordinates where the incoming and outgoing particle
momenta are +p and +(p — q), respectively. We emphasize
that M5 includes the nonrelativistic normalization factor,

1/4E\E,, where E,, = /p* + m%,z. We also define the

total mass m = m; + m,, the symmetric mass ratio
v =m;m,/m?, the total energy E = E, + E,, the sym-
metric energy ratio £ = E,E,/E?, the energy-mass ratio
y=E/m, and the relativistic Kkinematic invariant
6 = p, - py/m;m,. We emphasize that Eq. (8) is not valid
for m;, — 0 since quantum terms of order |q|/m;, are
dropped, as will be elaborated on in Ref. [25]. Also, note
that the arcsinh factor is proportional to the sum of particle
rapidities, arctanh|p|/E| ,.

Equation (8) only includes g-dependent terms that
persist in the classical limit. The logg?® term ultimately
feeds into the conservative Hamiltonian through the Fourier
transform [log ¢*]gr = —1/2z|r|*. The IR-divergent con-
tributions, parametrized by F, = fkl 1/X3Y X, and F, =
Sk, 1/X1Y1X3Y,X5 in the notation described in Eq. (12)
of Ref. [22], will cancel in the EFT matching.

The Hamiltonian is extracted from the amplitude via
EFT methods developed in Refs. [22,23,35] (see Ref. [13]
for another approach). Consider massive spinless particles
interacting via the center-of-mass Hamiltonian

H(p.r) = \/p> +m} + \[p> +m3 + V(p.r).

Vip.r) = gcm (5)" o)

where r is the distance vector between particles and i labels
PM orders. The above Hamiltonian is in a gauge in which
terms involving p - r or time derivatives of p are absent. We
then compute the scattering amplitude of massive scalars,

MUEFD) = S7e MSEFT), where MgEFT) comes from dia-
grams with two or fewer loops that depend on ¢y, ¢,, and
c3. In Ref. [22], the coefficients ¢; and ¢, were extracted

analytically to all orders in velocity. Inserting these into
MgEFT) effectively implements the subtraction of iterated

contributions. By equating MéEFT) = M3, we solve for the
3PM coefficient c5.

The main result of the present Letter is the 3PM
potential, encapsulated in the coefficients

2,2
Cl:l/ ;n (1—262),
r'¢
23 4o(1-20%) 12(1-£)(1-20%)2
sz_y;n F(l_saz)_ vo ( o )_”( 5)(3 . o) ’
r¢ 4 ré 2r¢
vmt 1 2 2 3
c3=—_ |5 (3—=6v+206v6—540° +108v0° +-4v5)
y& (12
4v(3+120% —40*)arcsinh, /751
- o*—1
3ur(d —26%)(1-506%) _3v0'(7—2062)
2(1+y)(1+0) 2y¢
_V*(3+8y—3¢- 150"~ 800>+ 15¢6°) (1-207)
4},352
203(3-4 1-26%)* 14(1-2¢8)(1-262)
W61 A1-200-20
r's 2r°¢

where, for convenience, the expressions for ¢; and ¢, in
Ref. [22] are reproduced here with slightly different
normalization and in our current notation. As emphasized
in Ref. [22], the cancellation of IR divergences between

/\/lgEFT) and M3 depends critically on ¢; and ¢, and thus
provides a nontrivial check of our calculation.

Consistency checks.—Our results pass several nontrivial
albeit overlapping consistency checks (see Ref. [25] for
details). First and foremost, we have verified that the 4PN
terms in our Hamiltonian are equivalent to known results up
to a canonical coordinate transformation,

(r,p) - (R,P) = (Ar + Bp,Cp + Dr)

Gmv G(1-2/v)
A—1— B=2 "V, ey,
2 amp] P27
Gmv Gmv
C—1 D—_2"",. 11
+ 20 + 2|r|3p r+ (11)

with ellipses denoting higher order corrections entering
as a power series in G/|r|, p?, and (p-r)?/r* (for past
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treatments, see Ref. [36,37]). To derive this coordinate
transformation we generate an ansatz for A, B, C, and D
and constrain it to preserve the Poisson brackets, i.e.,
{r,p} = {R,P} =1 with all other brackets vanishing, in
the spirit of Ref. [38]. We verify that within this space of
canonical transformations exists a subspace that maps our
Hamiltonian in Eq. (10) to the one in the literature, e.g., as
summarized in Eq. (8.41) of Ref. [10], up to the intersection
of 3PM and 4PN accuracy.

Second, applying the methods of Ref. [22], we have
checked that the full-theory amplitude M5 in Eq. (8) is

identical to the amplitude /\/lgEFT) computed from the
conservative Hamiltonian in Ref. [10] up to 4PN accuracy.

Third, we have extracted from our Hamiltonian the
coordinate invariant energy of a circular orbit as a function
of the period. Working at 2PN order—the highest
order subsumed by 3PM which is relevant to a virialized
system—we agree with known results [8].

Fourth, by solving the equations of motion derived from
our Hamiltonian, we obtain the 3PM-accurate classical
scattering angle in the center-of-mass frame and neglecting
radiation,

d dy 1 dd, &
2y =012 (g, D C(12
" J+12+J3< S T (12)

where J = b|p| is the angular momentum, b is the impact
parameter, and we have defined d, = myéqg* M /|p|,
d, = myélq|Mh, and dy = myé|p| M} / log g%, where the
q dependence cancels. The primed quantities denote the IR-
finite parts of the nonrelativistically normalized amplitudes
that enter the Hamiltonian coefficients as defined here and
in Ref. [22], so

47GrPm?
Mi=——"""(1-206?%),
: el )
3G A m?
Mh=-"———(1-56°), (13)
’ 2%¢lq]

and M} is the logg® term in Eq. (8). Truncated to 4PN
order, Eq. (12) agrees with known results [39].

Last but not least, in the probe limit m; < m,, our result
exactly coincides with the Hamiltonian for a point particle
in a Schwarzschild background to O(G?) and all orders in
velocity, e.g., as given in Eq. (8) of Ref. [40].

Conclusions.—We have presented the 3PM amplitude
for classical scattering of gravitationally interacting mas-
sive spinless particles. From this amplitude we have
extracted the corresponding conservative Hamiltonian for
binary dynamics to 3PM order.

The 3PM Hamiltonian in Egs. (9) and (10) will be
employed in a forthcoming paper [41] to compute approx-
imants for the binding energy of binary systems moving
on circular orbits and assess their accuracy against

numerical-relativity predictions. This is relevant for under-
standing the usefulness of PM calculations when building
accurate waveform models for LIGO/Virgo data analysis.

Our Letter leaves many avenues for future work, e.g.,
including obtaining higher orders in the PM expansion,
incorporating spin [42], radiation [43], and finite-size
effects, as well as connecting to other recent amplitude
approaches [19,44] and the effective one-body formalism
(3,12,13,45].

The simplicity of the 3PM amplitude in Eq. (8) and
potential in Eq. (10) bodes well for future progress.
Moreover, since the amplitude and EFT methods employed
in this Letter are far from exhausted, we believe that the
results we have reported mark only the beginning.
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