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As quantum circuits increase in size, it is critical to establish scalable multiqubit fidelity metrics. Here we
investigate, for the first time, three-qubit randomized benchmarking (RB) on a quantum device consisting
of three fixed-frequency transmon qubits with pairwise microwave-activated interactions (cross-reso-
nance). We measure a three-qubit error per Clifford of 0.106 for all-to-all gate connectivity and 0.207 for
linear gate connectivity. Furthermore, by introducing mixed dimensionality simultaneous RB—simulta-
neous one- and two-qubit RB—we show that the three-qubit errors can be predicted from the one- and two-
qubit errors. However, by introducing certain coherent errors to the gates, we can increase the three-qubit
error to 0.302, an increase that is not predicted by a proportionate increase in the one- and two-qubit errors
from simultaneous RB. This demonstrates the importance of multiqubit metrics, such as three-qubit RB, on
evaluating overall device performance.
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As quantum circuits increase in size, the problem of
characterization becomes more acute. Exponential growth
of the state space with the number of qubits means that
tomographic methods for reconstructing the system will
require exponential resources. Indeed, the number of
required measurements for quantum process tomography
scales as 16n [1], where n is the number of qubits. To avoid
scaling issues, methods have focused on characterizing the
primitive set of gates used to construct the universal gate
set. At minimum, for n qubits, this set contains several one-
qubit gates for all n qubits and n − 1 two-qubit gates [2].
But how good is the assumption that multiqubit algorithmic
fidelities will be predicted by these primitive gate fidelities?
There are strong indications that this assumption fails due
to cross talk and addressability errors. For example, surface
code algorithms require constructing local five-qubit gates
via sequential application of two-qubit CNOT gates in
parallel across a multiqubit circuit. Surface codes are
predicted to have a high threshold for correcting errors,
but they are typically simulated with correlated noise only
between qubits for which there is a direct gate [3]. In a recent
five-qubit test of a logical qubit, the fidelity was greatly
improved by compensating for ZZ terms to spectator (i.e.,
nonparticipating neighboring) qubits during the two-qubit
gate [4]. In addition, several studies have observed that
algorithmic and primitive gate fidelity do not always agree.
For example, when four algorithms were run on two
different five-qubit processors, there was no definitive
agreement from primitive to algorithmic fidelity [5]. In a
five-qubit device with measured two-qubit gate fidelities of
0.99, the state fidelity of a five-qubit Greenberger-Horne-
Zeilinger state was 0.82 after applying four two-qubit gates
[6]. Therefore, to predict the true algorithmic fidelity, we
need to measure multiqubit fidelity metrics.

Fortunately, the issue of scaling can be circumvented if
the goal is to characterize a process based on a few
measures, e.g., average gate fidelity. Based on this idea,
there have been several proposed techniques such as
MonteCarlo sampling [7,8], compressed sensing [9], matrix
product state tomography [10], and twirling protocols [11]
which have been applied in a variety of multiqubit systems
such as photons [12], NMR [13], and trapped ions [14].
Furthermore, the fidelity of certain multiqubit entangled
states can be efficiently measured, as was demonstrated for
10- [15] and 12-qubit states [16]. However, a common
drawback to these techniques is that the result is sensitive to
preparation and measurement errors (sometimes exponen-
tially so) and/or does not fully characterize the underlying
gates. These problems are addressed by randomized bench-
marking (RB) [17,18], where sequences of random Clifford
gates equaling the identity operator are applied to a set of
qubits. The decay of qubit polarization versus the sequence
length measures the average fidelity of the Clifford set
independent of preparation andmeasurement errors. RB is a
method widely used to characterize gates in superconduct-
ing circuits [6,19–21], ion traps [17,22–24], neutral-atom
traps [25], and NMR systems [26] and for solid-state spin
qubits [27]. Extensions to RB have been proposed and
implemented tomeasure specific gate errors via interleaving
[28], purity [29,30], and leakage [31,32].
RB is designed to address fidelities in multiqubit systems

in two ways. For one, RB can be performed by constructing
sequences from the n-qubit Clifford group. Additionally,
the n-qubit space can be subdivided into sets of qubits fnig
and ni-qubit RB performed in each subset simultaneously
[33]. Both methods give metrics of fidelity in the n-qubit
space. Despite the availability of these two methods, there
has been no demonstration of RB with n > 2, since it is
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viewed as sufficient to characterize only the primitive gate
set. Here we show, for the first time, a variety of three-qubit
RB combinations in a three-qubit fixed-frequency super-
conducting device. For all-to-all gate connectivity, we
measure a three-qubit error per Clifford (3Q EPC) of
0.106, which is well predicted by the primitive gate errors
from simultaneous RB. However, we find a strong depend-
ence on whether we perform gate calibrations collectively
or individually; the error increases to 0.302 when gates are
calibrated individually. Importantly, this increase in error is
not predicted by a commensurate increase in the primitive
gate errors as measured from simultaneous RB. The
importance of collective gate calibrations was also high-
lighted by the recent 12-qubit cluster state work of
Ref. [16]. We also show the importance of connectivity
in devices as the 3Q EPC increases to 0.207 when we limit
the device to have linear gate connectivity.
Before describing our experiment in detail, we first

provide a brief summary of the RB method; a detailed
discussion of RB can be found in Ref. [34]. The idea is to
construct an m-length sequence of random n-qubit Clifford
gates

Q
m−1
i fCn;ig ¼ C̃n;m−1 which is appended by the

inverse of the sequence C̃−1
n;m−1. Such an inverse is efficiently

calculated by the Gottesman-Knill theorem [35]. Starting in
the state j0i⊗n and applying the full sequence of Clifford
gates, we then measure the population in j0i of each qubit.
This procedure is repeated l times for different random
sequences, which, in the limit of large l, twirls the error map
to a depolarizing errormapΛ½ρ� ¼ αρþ ð1 − αÞI=d, where
p ¼ 1 − α is the depolarizing probability. The population in
j0i versus the sequence length fits to an exponential decay
Aαm þ B and the average error over the Clifford gates is

EPC ¼ 2n − 1

2n
ð1 − αÞ ð1Þ

(for a wide variety of noise models [36–38]). State prepa-
ration and measurement errors do not affect the decay
constant. The number of gates in the Clifford group grows
superexponentially—there are 24 one-qubit gates, 11 520
two-qubit gates, and 92 897 280 three-qubit gates [39].
However, the method requires only fair sampling from this
set. Each gate is constructed from a set of primitive gates,
and the exact number of 1Q and 2Q gates required depends
on the basis used. In this work, our 2Q gate is a controlled
NOT (CNOTij), where i is the control and j is the target. We
generate our 1Q and 2Q Clifford gates using the set of 1Q
gates fI; Xπ=2; X−π=2; Yπ=2; Y−π=2g where Pθ ¼ e−iθ=2P̂.
With this gate set, there are 2.2083 1Q primitive gates
per 1Q Clifford and 1.5 CNOT gates and 12.2167 1Q gates
per 2QClifford. To generate the 3QCliffords, we use the set
of 1Q gates fXπ=2; X−π=2; Y−π=2g plus arbitrary Z rotations,
which are software defined [19]; this is the set used by the
Qiskit compiler [40]. For all-to-all connectivity, there are 3.5
CNOT gates and 11.6 1Q gates (counting only X and Y). We

use the Qiskit compiler to change the connectivity by
removing one of the CNOT gates, which results in an average
of 7.7 CNOT gates and 18.4 1Q gates per 3QClifford. Sample
1Q, 2Q, and 3Q Cliffords are shown in Fig. 1.
In the case of multiqubit systems, RB may be performed

on the full n-qubits (as detailed above) or on subsets of the
system. For example, it is common to perform 2Q RB on
the subset of two-qubits defining a CNOT gate while the
other qubits are quiescent. As explained in Ref. [33], these
RB data will not necessarily decay exponentially, because
the other qubit subspaces are not twirled. Subsets are more
rigorously characterized by simultaneous RB, which also
measures some level of cross talk error since all qubits are
active. Herein, we will use the notation f½i; j�;…; ½k�g to
denote benchmarking where the mth set of nm qubits is
performing independent nm-qubit RB. For example,
f½0�; ½1; 2�g would indicate 1Q RB on qubit 0 and 2Q

FIG. 1. (a) Schematic of the experimental setup and connec-
tivity of the CNOT 2Q gates (control → target). (b) 1Q simulta-
neous RB f½0�; ½1�; ½2�g, (c) 2Q-1Q simultaneous RB f½0; 1�; ½2�g,
and (c) 3Q RB f½0; 1; 2�g. Under each is a sample (b) 1Q, (c) 2Q,
and (d) 3Q Clifford gate.
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RB on qubits 1 and 2. The different combinations for three-
qubits are shown in Fig. 1.
To test 3Q RB, we use a device comprised of three

fixed-frequency superconducting transmon qubits (Q0,
Q1, Q2) of frequencies (5.353,5.291,5.237) GHz coupled
to a common 6.17 GHz bus resonator. Our 1Q gates are
44.8-ns-wide DRAG-shaped microwave pulses [41]. Our
2Q gates are Gaussian smoothed square microwave
pulses applied to a qubit (the control) at the frequency
of one of the other qubits (the target). This activates a
cross-resonance interaction, which can be tuned to build a
composite pulse CNOT gate of 240 ns; details are found
in Ref. [42]. A schematic of the device and CNOT con-
nectivity is shown in Fig. 1. More device details are given
in Ref. [43].
For our three-qubit system, we consider eight possible

RB combinations: simultaneous 1Q RB (f½0�; ½1�; ½2�g),
separate 2Q RB (f½0; 1�g,f½0; 2�g,f½1; 2�g), simultaneous
2Q RB and 1Q RB (2Q − 1Q RB) (f½0; 1�; ½2�g,
f½0; 2�; ½1�g,f½1; 2�; ½0�g), and, finally, 3Q RB (f½0; 1; 2�g).
For each combination, we perform l ¼ 30 averages (except
for separate 2Q RB, where l ¼ 20). For simultaneous RB,
we attempt to match the sequence lengths on the different
subsystems, so we use a ratio of 9∶1 1Q:2Q Clifford gates
for 2Q-1Q simultaneous RB. We perform these RB
sequences under two different calibration procedures. In
procedure A, we calibrate the 1Q gate parameters simulta-
neously, e.g., qubit frequency, pulse amplitude, and drag
amplitude. In procedure B, we calibrate the 1Q gate
parameters individually. In both cases, we calibrate the
2Q gates separately. To give a sense of the types of curves
produced from 1Q, 2Q, and 3Q RB, a subset of the data
from calibration A is shown in Fig. 2. The errors from the
full RB set and for both calibrations are summarized in
Table I.
The data from Table I demonstrate that 2Q gate errors

from 2Q-1Q RB are worse, consistent with increased
cross talk. There is one exception, CNOT12, for calibra-
tion A, which decreases from 2.8 × 10−2 to 1.74 × 10−2.
This highlights the difference between the calibration
procedures, mainly that they result in different calibrated
values for the qubit frequency. The qubit frequencies in
calibration A are shifted by the average ZZ interaction
between pairs (ZZ01 ¼ 20 kHz, ZZ02¼ 352 kHz, and
ZZ12 ¼ 114 kHz). Since the ZZ02 shift is calibrated into
the frequency of Q2 for calibration A, there is a Z error
when benchmarking CNOT12 if Q0 is in the ground state;
the opposite is true for calibration B and so the stand-alone
CNOT12 RB error is very low (0.92 × 10−2). Although
there is only a subtle difference between the calibration
procedures, there is a large difference between the 3Q RB
errors, illustrating how 3Q RB can be a sensitive probe of
such calibration procedures on algorithmic fidelity.
Overall, calibrating the average ZZ into the qubit frequen-
cies maximizes 3Q fidelity. The data in Table I also
show the importance of connectivity, as omitting one of

the CNOTs causes the algorithmic error to increase
appreciably.
One of the main questions about 3Q RB is how much

new information does it convey; i.e., can 3Q errors be
predicted from the 1Q and 2Q errors (more specifically, the
1Q and 2Q depolarizing rates)? To answer this question, we
calculate the predicted 3Q decay parameter α [converting to
EPC using Eq. (1)]:

(a)

(b)

(c)

FIG. 2. Qubit 0 experimental data from different RB sequences
for calibration A. Black lines are exponential fits to the data, and
the gray points are from the individual trials. Red squares (blue
diamonds) are the averages over these trials for the light gray
(dark gray) points. (a) 1Q RB from simultaneous 1Q (red
squares) and 2Q-1Q RB (blue diamonds). (b) 2Q RB for the
01 pair performed in isolation (red square) and simultaneously
with 1Q RB on Q2 (blue diamonds). (c) 3Q RB for all-to-all
connectivity (red squares) and for limited (no CNOT12) con-
nectivity (blue squares). The decay parameters from these fits are
given in Ref. [43].
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α3Q ¼ αN1=3
1Q α2N3=3

2Q

7
ð1þ 3αN1=3

1Q αN2=3
2Q

þ 3α2N1=3
1Q αN2=3

2Q Þ ð2Þ

where N2 (N1) is the number of 2Q (1Q) gates per 3Q
Clifford and p1 ¼ 1 − α1ðp2 ¼ 1 − α2Þ are the 1Q (2Q)
depolarizing probabilities. For simplicity, we assume that
all 1Q gates and 2Q gates have the same depolarizing
probability; see [43] for the general form of Eq. (2) and
details of the derivation. The values discussed previously
for N1 and N2 did not consider the finite duration of gates.
In reality, there will be idle periods on some qubits, and
characterizing idle periods as one-qubit gates, N1 ¼ 34.7
(N1 ¼ 67.9) for all-to-all (limited) connectivity. This is the
number used for predicting the 3Q EPC.
For the 1Q and 2Q depolarizing probabilities in Eq. (2),

we use two sets of numbers from Table I to calculate the
predicted 3Q EPC shown in Table II. The first set are the
coherence-limited EPGs, which unsurprisingly predict a
much lower than measured 3Q EPC, indicating that the
majority of errors are due to unwanted and uncompensated
terms in the Hamiltonian such as cross talk. The second set
of numbers are from 2Q-1Q simultaneous RB, which
should be the most accurate measure of primitive gate
errors. Indeed, for calibration A, the predicted 3Q EPC is
accurate for both all-to-all and limited connectivity.
However, in the case of calibration B, there is very little
agreement between the predicted and measured 3Q EPC,
demonstrating the utility of the 3Q RB fidelity as a novel
multiqubit metric sensitive to subtle errors that are not fully
revealed by benchmarking the primitive gates. In calibra-
tion B, the uncompensated ZZ errors are amplified by the

specific structure of the 3Q Clifford gate, since there are
idle periods on the spectator qubits while the other qubits
perform the 2Q gate [this is schematically illustrated in
Fig. 1(d)]. Simulations including the measured 1Q=2Q
errors and ZZ predict well the observed 3Q RB data; see
Ref. [43]. Since the implementation of the 3Q Clifford gate
is not unique, certain constructions may amplify or attenu-
ate different error terms; investigating such constructions in
detail is left for future study.
In conclusion, we demonstrate, for the first time, 3Q RB

and subset 2Q-1Q simultaneous RB. Although there is no
true primitive three-qubit gate, 3Q RB measures a fidelity
that is not captured by the one- and two-qubit gate metrics.
As systems continue to increase in size and cross talk terms
dominate the error, metrics such as 3Q RB will play an
important role in benchmarking the true algorithmic fidelity
of these large systems. Although 3Q RB does not indicate
how to correct cross talk errors, it will play an important
role in validating mitigation strategies. Software and hard-
ware methods to suppress cross talk are an active area of

TABLE I. EPG (error per gate) and EPC (error per Clifford) from different RB experiments in ½Q0; Q1; Q2� order for 1Q
(one-qubit) EPG and in order [CNOT01, CNOT02, CNOT12] for the 2Q (two-qubit) EPG. 1Q EPG is the error per gate averaged
over the set indicated in the main text. 2Q EPG is calculated from the 2Q EPC assuming the 1Q EPG from f½0�; ½1�; ½2�g
benchmarking (see [43] for details of this calculation). 3Q EPC omitting CNOT12 for calibration B was not measurable, because the
error was too high to properly fit the data. The coherence-limited errors are calculated assuming only errors from T1 and T2.
Variability in T1 and T2 between the calibrations is due to drift over the approximately 3 days between experiments. Errors reflect
the uncertainty in the fit parameters.

Calibration A Calibration B

T1 ½29; 50; 39� μs ½42; 47; 35� μs
T2 ½39; 75; 59� μs ½61; 74; 46� μs
1Q EPG coherence limit ½6.5; 3.5; 4.4� × 10−4 ½4.2; 3.6; 5.4� × 10−4

1Q EPG from f½0�; ½1�; ½2�g RB ½1.12ð2Þ; 0.86ð1Þ; 1.22ð2Þ� × 10−3 ½1.40ð5Þ; 0.81ð1Þ; 1.66ð4Þ� × 10−3

1Q EPG from f½i�; ½j; k�g RB ½1.41ð3Þ; 0.95ð2Þ; 1.35ð2Þ� × 10−3 ½1.68ð4Þ; 0.95ð2Þ; 1.54ð3Þ� × 10−3

2Q EPG coherence limit ½6; 7; 5� × 10−3 ½5; 6; 6� × 10−3

2Q EPG from f½i; j�g RB ½1.26ð7Þ; 1.15ð8Þ; 2.8ð2Þ� × 10−2 ½0.86ð5Þ; 2.8ð1Þ; 0.92ð7Þ� × 10−2

2Q EPG from f½i; j�; ½k�g RB ½1.89ð6Þ; 1.62ð6Þ; 1.74ð7Þ� × 10−2 ½2.45ð8Þ; 4.2ð2Þ; 4.3ð2Þ� × 10−2

3Q EPC from f½0; 1; 2�g RB (all to all) 0.106(2) 0.302(6)
3Q EPC from f½0; 1; 2�g RB (omit CNOT12) 0.207(3)

TABLE II. Predicted 3Q EPC from 1Q and 2Q EPG numbers
listed in Table I by applying Eq. (2). See the main text for a
detailed discussion of the calculation.

Calibration A Calibration B

All to all Omit CNOT12 All to all

3Q EPC from RB 0.106(2) 0.207(3) 0.302(6)
Coherence limit 0.044 0.094 0.041
3Q EPC predicted
from f½i�; ½j; k�g RB

0.115(4) 0.226(6) 0.187(7)
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research and may require the use of active elements such as
tunable couplers [45,46].
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