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Belief-propagation (BP) decoders play a vital role in modern coding theory, but they are not suitable to
decode quantum error-correcting codes because of a unique quantum feature called error degeneracy.
Inspired by an exact mapping between BP and deep neural networks, we train neural BP decoders for
quantum low-density parity-check codes with a loss function tailored to error degeneracy. Training
substantially improves the performance of BP decoders for all families of codes we tested and may solve
the degeneracy problem which plagues the decoding of quantum low-density parity-check codes.
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Statistical inference on a graph is an important paradigm
in many areas of science, and equivalent heuristic algo-
rithms have been developed by different communities,
including the cavity method in statistical physics [1] and
the belief-propagation (BP) algorithm in information sci-
ence [2]. In the latter case, BP is the standard decoding
algorithm for low-density parity-check (LDPC) codes [3],
which form the backbone of modern coding theory and are
widely used in wireless communication [4]. With the
growing interest for quantum technologies, quantum gen-
eralizations of LDPC codes have been proposed [5–7], but
BP was found to be inadequate for their decoding [8]
because of error degeneracy, a feature unique to quantum
codes. Despite many improvements [8–10] to BP, there is
still no accurate decoding algorithm for general quantum
LDPC codes. This contrasts with statistical physics where
the cavity method has been generalized to the quantum
setting with some success [11–14].
Recently, an exact mapping between BP and artificial

neural networks has been revealed [15], which implies a
general machine-learning strategy to adapt BP to any
specific task. In this Letter, we use this strategy for the
decoding of quantum LDPC codes. Neural-network-based
decoders for quantum error-correcting codes have attracted
great interest recently, particularly in the context of
topological codes [16–27]. But near optimal (or very fast
suboptimal) decoding algorithms are already proposed for
these codes [28–31], which exploit their regular lattice
structure. In contrast, for quantum LDPC codes, which are
defined on random graphs, only recently has a decoding
algorithm been found for the special family of expander
codes [7,32,33] and the general case remains open. Our
main motivation to study this problem is that quantum
LDPC codes have the potential of greatly reducing the
overhead required to realize robust quantum processors
[34,35].

In this Letter, we train neural BP (NBP) decoders for
quantum LDPC codes. To guide the learning process, we
construct a loss function that takes into account error
degeneracy. We present results for the toric code [36],
the quantum bicycle code [5], and the quantum hypergraph-
product code [6]. Decoding accuracy improves up to 3
orders of magnitude compared with the untrained BP
decoder, and the improvement is even more substantial
when we ignore detected but uncorrected errors. While we
do not completely solve the LDPC decoding problem here,
our results suggest that an important step forward was
realized, and the strategy could be applied more broadly,
for instance in many-body physics. That general strategy
consists in training a neural network to solve a quantum
problem, with initial conditions corresponding to the BP
algorithm that solves the classical counterpart.
LDPC codes.—A linear error-correcting code can be

represented by its parity-check matrix H with binary (0 or
1) matrix elements. Codewords c’s satisfying Hc ¼
0mod 2. As a result, when an error pattern e is imposed
on the codeword c → c0 ¼ cþ emod 2, there will be a
measurable syndrome pattern s ¼ Hc0 ¼ Hemod 2, which
signals the occurrence of the error e. The role of the decoder
is to infer the error pattern e from the measured syndrome
pattern s. Classical LDPC codes are error-correcting codes
with sparse parity-check matrices, i.e., where the number of
1’s in each column and row are bounded by constants
independent of the matrix size.
Belief propagation.—The Tanner graph is a graphical

representation of the parity-check matrix H, with a set of
variable nodes fevjv ¼ 1;…; ng (containing the error
pattern) and a set of check nodes fscjc ¼ 1;…; mg (con-
taining the syndrome pattern). There is an edge between ev
and sc if Hcv ¼ 1. Neighborhoods of variables and checks
are defined by N ðvÞ¼fcjHcv¼1g and N ðcÞ¼fvjHcv¼1g,
respectively.

PHYSICAL REVIEW LETTERS 122, 200501 (2019)

0031-9007=19=122(20)=200501(6) 200501-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.122.200501&domain=pdf&date_stamp=2019-05-22
https://doi.org/10.1103/PhysRevLett.122.200501
https://doi.org/10.1103/PhysRevLett.122.200501
https://doi.org/10.1103/PhysRevLett.122.200501
https://doi.org/10.1103/PhysRevLett.122.200501


BP is an iterative algorithm for approximating the
average value of each variable node ev, over all error
patterns e’s that are consistent with the given syndrome
pattern s (meaning He ¼ s). In performing the average,
each error pattern e is weighted by a probability
PðeÞ ¼ Q

vPðevÞ, which should accurately model the noise
statistics of the physical device carrying the information.
Mathematically speaking, BP solves the posterior marginal
probability for each variable node Pðev ¼ 1jsÞ ∝P

enevPðsjenev; ev ¼ 1ÞPðenev; ev ¼ 1Þ. This goal is achi-
eved by iterating the following simple BP equations:

μðtþ1Þ
v→c ¼ lv þ

X
c0∈N ðvÞnc

μðtÞc0→v; ð1Þ

μðtþ1Þ
c→v ¼ ð−1Þsc2tanh−1

Y
v0∈N ðcÞnv

tanh
μðtÞv0→c

2
; ð2Þ

where lv ¼ log½Pðev ¼ 0Þ=Pðev ¼ 1Þ� is the prior log-
likelihood ratio for variable ev and N ðxÞny is the set of
all neighbors of x except for y [4]. The initial condition for

the iteration is μðt¼0Þ
v→c ¼ 0, and after T steps (sufficiently

long), one stops the iteration and performs the following
marginalization for the posterior log-likelihood ratio:

μv ¼ lv þ
X

c∈N ðvÞ
μðTÞc→v: ð3Þ

The posterior marginal probability relates to μv according
to log½Pðev ¼ 0jsÞ=Pðev ¼ 1jsÞ� ¼ μv. Equivalently
Pðev ¼ 1jsÞ ¼ σðμvÞ and Pðev ¼ 0jsÞ ¼ 1 − σðμvÞ, where
σðxÞ ¼ 1=ðex þ 1Þ is the Fermi function (or horizontally
flipped sigmoid function). The inferred error pattern maxi-
mizes these marginal probabilities; i.e., ev is inferred to be
0 (1) when μv is positive (negative).
Neural belief propagation.—The above iterative pro-

cedure can be exactly mapped to a deep neural network,
where each neuron represents a message μc→v or μv→c [15].
(See Fig. 1.) This permits generalization of the original BP
algorithm by introducing additional “trainable” weights

wðtÞ
c0v;vc and wðTÞ

cv;v, and trainable biases bðtÞv and bðTÞv .
Specifically, in this NBP algorithm, Eqs. (1)–(3) are
modified to

μðtþ1Þ
v→c ¼ lvb

ðtÞ
v þ

X
c0∈N ðvÞnc

μðtÞc0→vw
ðtÞ
c0v;vc; ð4Þ

aðμðtþ1Þ
c→v Þ ¼ iπsc þ

X
v0∈N ðcÞnv

aðμðtÞv0→cÞ; ð5Þ

μv ¼ lvb
ðTÞ
v þ

X
c∈N ðvÞ

μðTÞc→vw
ðTÞ
cv;v; ð6Þ

respectively [15,37]. Notice that all equations above have
the form of weighted sum plus bias, interleaved with the
nonlinear function aðxÞ ¼ log ½tanh ðx=2Þ�. This is the
canonical form of feed-forward neural networks [38].
When setting all newly introduced parameters to 1, these
equations became the standard BP equations [39].
To train these weights, one minimizes a carefully

designed loss function L by backpropagating its gradients
with respect of all trainable parameters. E.g., biases are

updated according to ΔbðtÞv ¼ −lr × ∂L=∂bðtÞv , where lr is
the learning rate. For classical codes, one aims for repro-
ducing the whole error pattern exactly, so the natural choice
of the loss function is the binary cross entropy function
between the inferred error pattern and the true error pattern:

Lðμ⃗; eÞ ¼ −
X
v

ev log σðμvÞ þ ð1 − evÞ log ½1 − σðμvÞ�:

ð7Þ

Quantum setting.—Quantum noise can be modeled by
random Pauli operators I, X̂, Ŷ, and Ẑ on the qubits. A
convenient way of bookkeeping a N-qubit error uses a
2N-bit string e representing the Pauli operator: P̂ðeÞ ¼Q

1≤i≤N ½X̂i�ei ½Ẑi�eiþN . In this representation, two Pauli-
string operators P̂ðaÞ and P̂ðbÞ commute (anticommute)
when aTMb is even (odd), where the symplectic inner
product is defined withM ¼ ð

1N×N

1N×NÞ. Note that all Pauli-
string operators satisfy P̂2 ¼ 1.
Likewise, the quantum codewords jψi are defined by a

set of constraints Sjjψi ¼ þjψi where each stabilizer
generator Sj is a Pauli-string operator. For these equations
to have a solution, it is necessary for the Sj to mutually

FIG. 1. Schematics of the NBP decoder. The main cycle in the
gray box is repeated Nc times. Inside one cycle there are two
phases of computation, the cv → vc and vc → cv phases which
are governed by Eqs. (4) and (5), respectively. The inputs to the
neural network are denoted by the green boxes, where the prior
and syndrome correspond to flvg in Eq. (4) and fscg in Eq. (5),
respectively. After each cycle, the set of output fμc→vg is
marginalized by Eq. (6) and the resulting fμvg is sent to the
loss function Eq. (8). We also introduce residual connections to
facilitate training of deep networks [40]. (See Supplemental
Material [41] for details.)
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commute and to not generate −1 under multiplication.
Using the above bookkeeping, we can represent each
stabilizer generator Sj by a 2N-bit string, and assemble
these strings as rows of a parity-check matrix H. A
quantum LDPC code is one whose parity-check matrix
is row sparse and column sparse.
There is a crucial difference between classical and

quantum error correction. In the classical case, successful
decoding means the inferred error einf is exactly the same as
the true error e; while in the quantum case, one only
requires the total error etot ¼ eþ einf mod 2 to belong to
the “stabilizer group”—the set of all Pauli-string operators
spanned by the rows of H. This is because two Pauli-string
operators E and F ¼ ESj that differ by a stabilizer
have identical action on all code states. To test if etot

belongs to the stabilizer group, one simply needs to check
that it commutes with all the operators that commute
with the stabilizers, i.e., that H⊥Metot ¼ 0mod 2 where
H⊥ is the matrix that generates the orthogonal complement
of H with respect to the symplectic inner product,
HMðH⊥ÞT ¼ 0mod 2.
The above analysis motivates the design the following

loss function tailored for quantum error correction:

Lðμ⃗; eÞ ¼
X
i

f

�X
jk

H⊥
ijMjk½ek þ σðμkÞ�

�
: ð8Þ

Note the parity check parityðxÞ ¼ xmod 2 is replaced
by the continuous and differentiable function fðxÞ ¼
j sin ðπx=2Þj to facilitate gradient-based machine-learning
techniques. This loss is minimized when the true error e
and the inferred error einf sum to a stabilizer.
The loss function can also be averaged over all NBP

cycles L̄ ¼ ð1=NcÞ
PNc

i¼1 Lðμ⃗ðiÞ; eÞ, which requires mar-
ginalization after each cycle. In this Letter, we use a
variation of this form. See Supplemental Material [41]
for more details.
Toric code.—We first study the toric code [36] on an

L × L square lattice, which is a simple and widely studied
quantum LDPC code. (See Fig. 3 for the local Tanner
graph.) During training, we generate error patterns con-
sisting of independent X and Z errors with physical
error rate perr, i.e., Pðev ¼ 1Þ ¼ perr for all v. In each
minibatch, 120 error patterns are drawn from six physical
error rates that are uniformly distributed in the range
perr ∈ ½0.01; 0.05�. After ∼10 000 minibatches, we test
the performance of the trained decoder. Figure 2 compares
the original BP decoder (before training) and the trained
NBP decoder at perr ¼ 0.01 for various code sizes. Training
significantly enhances decoding accuracy up to 3 orders of
magnitude [Fig. 2(a)], and we observe that the training time
required for convergence depends weakly on the code size
L. (See Supplemental Material [41] for details.)
We can distinguish two types of decoding failure.

“Flagged” failures occur when the correction inferred by

the decoder does not return the system to the code space—
there remains a nontrivial syndrome after decoding.
“Unflagged” failures occur when the correction returns
the system to the wrong code state. These two contributions
to the overall logical error rates are shown in Figs. 2(b) and
2(d), respectively. We observe that training greatly reduces
flagged failures at the expense of slightly increasing
unflagged failures, and overall there is a significant net
decrease of failures. It should be noted that flagged failures
are benign because they can be redecoded, using either a
more accurate but more expensive decoder (e.g., the
minimum-weight perfect matching [42]) or a higher layer

FIG. 2. Training the NBP decoder for the toric code with
different code sizes. (a) The logical error rate decreases substan-
tially after training (tested at perr ¼ 0.01). Here, the logical error
rate is broken up into two terms in (b) and (d), corresponding to
“flagged” and “unflagged” errors, respectively. (See main text for
details.) (c) The NBP decoder exploits degeneracy by correctly
decoding with an error pattern that is not exactly the same as the
true error pattern. Training parameters: Nc ¼ 25, lr ¼ 2 × 10−4.

FIG. 3. (Top panels) One of the observed patterns of the learned
weights for the toric code. To obtain this clear pattern, we
implemented weights sharing (see main text) with G ¼ ð2i; 2jÞ;
i; j ¼ 0; 1;…. A noisy version of the same pattern is observed
when weight sharing is turned off. (Bottom panels) Tanner graph
of the toric code and the position of cvvc weights (yellow star).
Correspondence to the top panels is marked by the black box.
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of code for erasure errors. Such a mixed decoding strategy
would combine the speed and flexibility of BP decoder and
reliability of a more expensive decoder used on a very small
fraction (e.g., 10−4) of instance.
The loss function Eq. (8) takes into account error

degeneracy, and we see in Fig. 2(c) that the frequency
of successful decoding where the actual and the inferred
error differ by a stabilizer increases with the code length.
This rate was nearly zero with the untrained decoder (see
Supplemental Material [41] for examples of learned
stabilizers).
The periodic nature of the toric code inspired us to utilize

a weight-sharing technique, where the weights are invariant
under lattice translation G. We can control the amount of
sharing by the size of G (similar to the filter size in
convolutional neural networks). Figure 3 is a graphical
representation of the trained weights, and suggests that
symmetry breaking improves BP for quantum codes. We
also observe that weights trained on one code size can also
increase the performance when applied to codes of different
sizes, which implies that the learning is universal or
transferable (see Supplemental Material [41] for more
details).
Figure 4 shows that significant improvement can be

achieved across a range of physical error rates. Using the
original BP, increasing the code size leads to worse
performance. After training, performance improves with
size for sufficiently low error rates, and the trend indicates
that further improved training might lead to a BP decoder
with a finite threshold.
When the neural network is initialized away from BP,

training gets stuck at a much worse local minimum.
This illustrates the importance of incorporating domain
knowledge (when possible) before using general machine-
learning methods as black boxes, which contrasts with
prior uses of neural net decoding of the toric code
[16,18].

Quantum LDPC codes with high rate.—The toric code
encodes a constant number K ¼ 2 of qubits in a growing
number N of physical qubits, thus achieving a vanishing
rate r ¼ K=N. We now turn to quantum LDPC codes with
constant rates.
The quantum bicycle code [5] is a quantum LDPC code

constructed from a random binary vector A of size N=2.
First, all cyclic permutations of A are collected as columns
in a matrix C. Then C is concatenated with its transpose to
form H0 ¼ ½C;CT �, from which K=2 rows are chosen
randomly and removed. After these constructions, H0 is
a self-dual matrix (meaning H0HT

0 ¼ 0mod 2) of size
ðN − KÞ=2 × N. The final parity-check matrix for the
quantum bicycle code is H ¼ ðH0

H0
Þ. The sparsity of this

matrix can be controlled by the number of nonzero
elements in A. Training the NBP decoder for a quantum
bicycle code with N ¼ 256, K ¼ 32, and

P
iAi ¼ 8

improves the accuracy up to 3 orders of magnitude
[Fig. 5(a)].
The quantum hypergraph-product code [6] is constructed

from two classical codes with parity-check matrices
½H1�m1×n1 and ½H2�m2×n2 . The following products are con-
structed HX ¼ ½H1 ⊗ In2×m2

; Im1×n1 ⊗ HT
2 � and HZ ¼

½ In1×m1
⊗ H2; HT

1 ⊗ Im2×n2 �, and the parity-check matrix
of the quantum code follows H ¼ ðHX

HZ
Þ, which performs

m ¼ m1n2 þ n1m2 checks on n ¼ m1m2 þ n1n2 qubits. In
this Letter, we study a hypergraph-product code, for which
H1 and H2 are the classical ½7; 4; 3� and ½15; 7; 5� Bose-
Chaudhuri-Hocquenghem codes, respectively. This code
has rate r ¼ 28=129 ∼ 0.2. Training the NBP decoder for
this code improves the accuracy up to one order of
magnitude [Fig. 5(b)].
Conclusions.—We significantly improved the belief-

propagation decoders for quantum LDPC codes by training
them as deep neural networks. Our results on the toric code,
the quantum bicycle code, and the quantum hypergraph-
product code all show orders of magnitude of enhancement
in decoding accuracy. The original belief propagation is

FIG. 4. Evolution of the logical error rate as a function of the
physical error rate, for the BP (NBP) decoder before (after)
training. (a) Before training the performance of the BP decoder is
worse for larger code sizes at all physical error rates. (b) After
training, the performance improves substantially for all code sizes
at all physical error rates, and the performance curves start to
cross each other. This indicates the development of a threshold.

FIG. 5. Training greatly improves the BP decoder for quantum
LDPC codes with high rates. (a) Quantum bicycle code with code
parameter ½½256; 32�� and rate r ¼ 0.125. Training parameters:
Nc ¼ 12, lr ¼ 1 × 10−4. (b) Quantum hypergraph-product code
with code parameter ½½129; 28�� and rate r ∼ 0.2. Training
parameters: Nc ¼ 12, lr ¼ 1 × 10−4.
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known to have bad performance for quantum error-
correcting codes [8]. On the other hand, training a neural
decoder with general architecture has been reported to be
hard for large codes [20,43]. Our results indicate that
combining the general framework of machine learning
and the specific domain knowledge of quantum error
correction is a promising approach, when neither works
well individually.
The significance of this result is supported by the

tremendous success of BP with classical LDPC codes
[4], and the fact that quantum LDPC codes promise a low-
overhead fault-tolerant quantum computation architecture
[34]. In addition, our techniques could be adapted to uses of
BP in other quantum many-body problems, such as
improving the quantum cavity method [11–14].
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