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We develop a metric-torsion theory for chiral structures by using a generalized framework of
transformation optics. We show that the chirality is uniquely determined by a metric with the local
rotational degree of freedom. In analogy to the dislocation continuum, the chirality can be alternatively
interpreted as the torsion tensor of a Riemann-Cartan space, which is mimicked by the anholonomy of the
orthonormal basis. As a demonstration, we reveal the equivalence of typical three-dimensional chiral
metamaterials in the continuum limit. Our theory provides an analytical recipe to design optical chirality.
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Introduction.—The analog space-time where a trans-
parent electromagnetic medium is fully equivalent to a
pseudo-Riemannian metric has been the subject of great
interest for fundamental reasons dating back to the early
days of general relativity [1–7]. In 2006, Pendry et al. [8]
and Leonhardt [9] independently proposed the scheme
of transformation optics [10–12] by reversely applying
this material-geometry correspondence to practical optical
design, opening fascinating opportunities to manipulate
the propagation of electromagnetic fields. Well-known
examples include invisible cloaks [13], optical illusion
[14], wide-angle lenses [15], flat antennas [16], extreme
plasmonics [17,18], and advanced near-zero permittivity
materials [19–21]. In principle, the active coordinate trans-
formation creates an optical Riemannian space where the
permittivity ϵ and permeability μ measure the local optical
length and fix the causal structure of the space-time as the
metric in general relativity.
While significant effort has been made concerning the

paradigms [22–26] and extensions to time domain [27],
nonlinearity [28], and PT symmetry [29], how to incor-
porate the chiral structures (or the spin degree of freedom
(d.o.f.) of fields) with transformation optics remains elu-
sive. Modeling the chiral structure as a curved space is an
essential and rather nontrivial problem. In macroscopic
electrodynamics, the chiral effect manifests as the recip-
rocal magnetoelectric coupling κ in the constitutive rela-
tions of naturally occurring or artificial chiral materials
[30,31], leading to the natural optical activity, circular
dichroism, negative index [32], and repulsive Casimir force
[33]. The helical building blocks indicate a geometrical
origin from the inhomogeneous ðϵ; μÞ, or equivalently from
the metric. In covariant vacuum electrodynamics, however,

the constituent tensors of a curved Riemannian space are
solely determined by the metric [3–5], and only a gyration
vector wi ∝ g0i=g00 appears from the nonreciprocal mag-
netoelectric effect in moving medium [3,34]. To describe
more generic constitutive relations which are generally
believed to have no geometric origins, Maxwell’s equations
are formulated to a metric-free form in the premetric
electrodynamics [35]. Although it has been proposed to
interpret the isotropic chiral effect as the torsion of a
Riemann-Cartan space [36], there is not yet a direct
connection to real chiral structures. A satisfactory theory
of the chiral structures which captures the geometrical
nature is still lacking.
In this Letter, we present a metric-torsion theory for the

chiral structures with a generalized scheme of transforma-
tion optics beyond coordinate transformation. As a key
insight, we show that the chiral structure indeed exhibits a
pure metric description associated with the anholonomic
transformation, which bridges the gap between transfor-
mation optics and covariant vacuum electrodynamics. By
applying the formal invariance to the local orthonormal
basis [23], the structural chirality has a dual Riemann-
Cartan description [37] where the anisotropic chiral term is
interpreted as the torsion, mimicked by the object of
anholonomity. Different from previous studies [36–39],
our theory not only reveals the underlying geometrical and
topological structures of chirality but also provides an
analytically closed form for the chiral constitutive relations,
paving the way towards the quantitative design of chiral
materials from the achiral background.
Limitation of transformation optics.—We begin with

a brief review of the limitation of conventional trans-
formation optics in three-dimensional (3D) covariant
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formalism [40]. The source free Maxwell’s equations
of monochromatic waves read ϵabc∂bEc − iωBa ¼ 0,
ϵabc∂bHc þ iωDa ¼ 0, where ω is the angular frequency,
ϵabc ¼ eabc=

ffiffiffi
g

p
is the Levi-Civita symbol with eabc ¼ 0,

�1 the permutation symbol, g ¼ detðgαβÞ, both ϵabc and the
excitations ðBa;DaÞ are tensor densities of weight þ1.
Without magnetoelectric coupling, the Maxwell’s equa-
tions are supplemented with the constitutive relations
Da ¼ ϵ0ϵ

abEb, Ba ¼ μ0μ
abHb. Under coordinate transfor-

mation, ϵab and μab obey the tensorial law [25]

ϵ0αβ ¼ J−1JαaJ
β
bϵ

ab; μ0αβ ¼ J−1JαaJ
β
bμ

ab; ð1Þ

where Jαa ¼ ∂x0α=∂xa is the Jacobi matrix and J ¼ detðJaαÞ.
Unless otherwise specified, we refer to the curved geometry
only for the transformed space to focus on the effect of
transformation. From the passive viewpoint, the coordinate
transformation is equivalent to the transformation between
the holonomic coordinate bases in the tangent space
according to eα ¼ Jaαea, whereas ea ¼ ðx̂; ŷ; ẑÞ is the
Cartesian basis. The problem is that the three independent
variables for an arbitrary coordinate transformation is fewer
than the six d.o.f. for each of the real symmetric ðϵ; μÞ of a
lossless medium [34]. Thus, not all metric transformation
media can be diagonalized to a background material in the
flat space by a similarity transformation with the Jacobi
matrix, which indicates that the metric contains more
information than originally believed. Here, the metric
transformation media refer to the transformation media
which relate a metric space created by spatial transforma-
tion. In particular, the material tensor created from a flat
vacuum ϵαβ ¼ μαβ ¼ ffiffiffi

g
p

gαβ, where gαβ ¼ JαaJ
β
bδ

ab, is a
subset of the general metric medium [3]. The d.o.f.
redundance is consistent with the fact that the chirality
of real chiral materials emerges from the handed inhomo-
geneity of ðϵ; μÞ without inversion symmetry.
Chirality from metric.—To describe the chiral continuum

with spatial transformation, we note a general metric can
be locally diagonalized to the Euclidean form by gαβ ¼
eaαebβδab, where eaα is usually not a Jacobi matrix [41].
Inspired by this and following [23], we propose the
generalized metric transformation media whose parameters
ðε0; μ0Þ are created by replacing Jαa with eαa in Eq. (1), where
eαa is reciprocal to eaα. We further propose that the materials
associated with the anholonomic eαa, which are not Jacobi
matrices, are intrinsic chiral media with symmetric chiral
tensor κ. In this context, the chiral materials depend entirely
on the metric of the transformed space, and we refer to it
as the metric description in consistent with the covariant
vacuum electrodynamics. In the dual Riemann-Cartan
description below, we compute κ directly as the torsion
of the space.
Chirality from anholonomy.—We now solve κ explicitly

by considering a thought experiment to create ideally chiral

metamaterials [42–44]. We start with a virtually achiral
continuum where the anisotropic ðϵ; μÞ at two nearby
points p1 and p2 are shown in Fig. 1(a). In practice, the
anisotropic continuum can be regarded as the homogenized
nanostructured metamaterial fabricated by either top-down
or bottom-up method. At each point, it is attached with a
basis ea representing by the triad aligned with the Cartesian
axes. To create structural chirality, we rotate the triads
locally to construct a basis field êαðxÞ [Fig. 1(b)], which
relates with the Cartesian basis by êαðxÞ ¼ eaαðxÞea. For
simplicity, we consider only the orthonormal frame
êα · êβ ¼ δαβ. It is reasonable to assume that the triads
for infinitesimally apart distances connect smoothly. If the
local anisotropy of the medium follows the triad during
rotation, i.e., the material parameters ðϵ̄; μ̄Þ in the ortho-
normal basis take the same values as ðϵ; μÞ, we obtain a
chiral medium. As a metric medium, the material ðϵ0; μ0Þ are
described by Eq. (1) with eaα replacing Jaα. In the êα basis,
however, the permittivity and permeability are ðϵ̄; μ̄Þ, and
the information of structural chirality is encoded in the
object of anholonomity Cγ

αβ, which is defined as the
structure constant of the Lie bracket: ½êα; êβ� ¼ Cγ

αβêγ
[41]. By construction, Cγ

αβ is antisymmetric in its lower
indices. In components, it reads Cγ

αβ ¼ eγað∂αeaβ − ∂βeaαÞ.
Formally, the anholonomic Maxwell’s equations read [45]

ϵαβγ½∂βEγ þ Cδ
βγEδ� − iωBα ¼ 0;

ϵαβγ½∂βHγ þ Cδ
βγHδ� þ iωDα ¼ 0; ð2Þ

where ðE;HÞα ¼ eaαðE;HÞa and ∂α ¼ eaα∂a is the Pfaffian
derivative. In the coordinate basis, Eq. (2) reproduce the
usual forms because Cγ

αβ vanishes identically for non-
singular coordinate transformation.
The presence of Cγ

αβ is crucial for the geometrical
interpretation of the chiral effect. In the tetrad formalism
of relativity, the orthonormal basis defines a local frame
carried by an accelerated observer along its world line [41],
and Eq. (2) describe the electromagnetism observed in
the noninertial frame with Cγ

αβ a Coriolis term [6]. In this
Letter, however, we generalize the formal invariance of

FIG. 1. Schematics of the local anisotropy of ðϵ; μÞ (the crossed
rods) and the local frames (the triads) at two nearby points in
(a) the achiral background and (b) the chiral continuum. The
Cartan’s circuits are shown in the right panels.

PHYSICAL REVIEW LETTERS 122, 200201 (2019)

200201-2



Maxwell’s equations to the orthonormal basis and alter-
natively regard Eq. (2) as the Maxwell’s equations in the
Cartesian system by recasting to eαβγ∂βEγ − iωB̄α ¼ 0,
eαβγ∂βHγ þ iωD̄α ¼ 0. Here, we have introduced new
excitations

D̄α ¼ ϵ̄αβEβ −
i
c
καβHβ;

B̄α ¼ i
c
καβEβ þ μ̄αβHβ; ð3Þ

where

καβ ¼ λ0
4π

eαγδCβ
γδ; ð4Þ

with λ0 ¼ 2πc=ω the vacuum wavelength. In this way, we
obtain the homogenized chiral constitutive relation for the
chiral material with the chiral tensor being interpreted as
the anholonomy of the orthonormal basis. We refer this
approach as the Riemann-Cartan description which will
be elaborated below. The dimension of Cγ

αβ is [radm−1]
since it is weighted by λ0=4π. Comparing Eq. (3) with the
standard bianisotropic constitutive relations [30], the
Lorentz reciprocity restricts the chiral tensor to be sym-
metric κ ¼ κT . Therefore, Eq. (3) describe intrinsic chiral
media instead of the pseudochiral omega media with
antisymmetric κ. From Eq. (4), it is useful to decompose
κ into two irreducible parts with distinct geometric origins:
a trace part consisting of diagðC1

23; C
2
31; C

3
12Þ, and an off

diagonal part taking values from Cα
αβðα ≠ βÞ. In addition, κ

is even under time reversal and odd under spatial inversion
[30]. It also satisfies with the Post traceless constraint [30]
and electromagnetic duality symmetry [46].
Torsion.—Now we illustrate how Cγ

αβ is interpreted as
the torsion tensor of a Riemann-Cartan space. In the
coordinate base, torsion breaks the infinitesimal Cartan’s
circuits [6]. Here, the nontrivial chiral metric is locally
diagonalized to the Euclidean form in the êα basis.
Applying the first Cartan’s structure equation ∇XY −
∇YX ¼ ½X; Y� to êα gives rise to Cγ

αβ ¼ Γγ
αβ − Γγ

βα. As a
nontensorial object, the object of anholonomity breaks the
quadrilateral defined on the integral curves of the bases.
Consider the integral curves of ê2 and ê3 originating
from an arbitrary reference point p1 in the right panel of
Fig. 1(b), the misfit ¯p3p30 of the infinitesimal quadrilateral
along two different paths by swapping the order along the
integral curves is b ¼ C1

αβds
αdsβê1, where dsα (α ¼ 2, 3)

denotes the distance along the êα direction [45]. Central to
our theory is that the formal invariance of Maxwell’s
equations identifies the isomorphism between Cartan’s
circuit and the nonclosed quadrilateral, thereby enabling
the simulation of torsion in the coordinate basis with Cγ

αβ

in êα as defining the metric in conventional transformation

optics. Moreover, a full Riemann-Cartan structure is
achieved when we consider the independent metric from
either a nontrivial background or a successive coordinate
transformation. The dictionary of related quantities is
summarized in Table I. It is interesting that the presence
of torsion in the constitutive relation is in agreement with
the other light-torsion coupling approaches such as through
vacuum polarization in the quantized level [39], the
premetric electrodynamics [6], and the nonminimal cou-
pling [36], without modifying the Maxwell’s equations
[37]. Different from [36] where the formal theory of
Maxwell’s equations in the Riemann-Cartan space is
considered, our program starting from the anholonomic
frame not only captures the geometrical nature of the
structural chirality but also provides an alternative Coriolis
coupling between light and torsion without assuming the
admissible nonminimal coupling [36–39].
The Riemann-Cartan structure is reminiscent of the

geometrical theory of distributed dislocations in elastic
and crystalline solids [47–53], where torsion is interpreted
as the local density of dislocations. Since the lower indices
α and β denote the area element of the circuit, and the upper
index γ denotes the direction of the Burgers vector, we
deduce that the diagonal κ is associated with the screw
dislocation continua whose local Burgers vector is
perpendicular to the area element, while the off-diagonal
terms are associated with the edge dislocation continua
whose Burgers vector is parallel to the area element.
The Burgers circuit indicates the nontrivial topological
structure of electromagnetism in the integral form.
Specifically, the Burgers vector leads to a correction term
in Faraday’s law:

H
Γ E · dx ¼ iω

R
SB · dσ þ b ·E, where

B ¼ μ0μH and Γ denotes the loop enclosing an infinitesi-
mal area σ. A similar expression applies to Ampère’s law.
Application.—To validate our theory, we examine

two minimal models of 3D chiral metamaterials [42]
which have a previously unrecognized connection. The
first model originates from the cholesteric liquid crystals
(CLCs) which exhibit optical activity for on axis propa-
gation [54–57]. As depicted in Fig. 2(a), CLC locally
behaves like a uniaxial material in the homogeneous limit,
where the in-plane material tensors are given by
χ0ab ¼ χ⊥δab þ ðχk − χ⊥Þnanb, (a, b ¼ x, y) with χ repre-
senting ϵ or μ. The local anisotropic director nðzÞ ¼
( cos θðzÞ; sin θðzÞ; 0) rotates with a local spatial angular
velocity ωsðzÞ ¼ ∂θ=∂z about the local z axis. The original
CLC is a special case of ωs ¼ π=a with constant pitch a.

TABLE I. The duality dictionary of the chiral continuum.

Expression Background Metric Riemann-Cartan

Basis Coordinate Coordinate Noncoordinate
Geometry δab gαβ δαβ, C

γ
αβ

Optics ϵ, μ ϵ0, μ0 ϵ̄, μ̄, κ
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In the metric description, it can be modeled as a generalized
transformation medium constructed from an achiral back-
ground: χ 0 ¼ RzðθÞχRT

z ðθÞ, where χ ¼ diagðχk; χ⊥; χzÞ
represents the homogeneous Cartesian anisotropy and Rz ¼
R2 ⊕ I1 is the rotation matrix about z axis with R2 the 2D
rotation matrix, I1 ¼ 1. Instead of directly solving the wave
equation from χ 0 [54,55], we note that nðzÞ introduces
naturally an orthonormal basis by êα ¼ ½Rz�aαea, in which
the chiral constitutive relation can be extracted. The
propagation equation in êα basis reads [45,57]

dψ
dz

¼ i
ω

c
ðGþ iKÞψ : ð5Þ

In Eq. (5), we have split the physical effect into a local
anisotropic material part plus a geometric chiral part

G ¼

0
BBB@

0 0 μk 0

0 0 0 μ⊥
ϵ⊥ 0 0 0

0 ϵk 0 0

1
CCCA; K ¼

0
BBB@

0 κ 0 0

−κ 0 0 0

0 0 0 κ

0 0 −κ 0

1
CCCA;

where κ ¼ −k0ωs, ψ ¼ ½R2 ⊗ I2�ψ0 with I2 the 2 × 2

identity matrix and ψ0 ¼ ðEx; Ey; Z0Hy;−Z0HxÞT with

Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
μ0=ϵ0

p
. It can be shown that the spatial angular

velocity is the structure constant

½êα; êz� ¼ −ϵαβzωsêβ; ðα; β ¼ x; yÞ: ð6Þ

Therefore, we find that K is determined by the object of
anholonomity, which is further identified with torsion in the

coordinate basis, and Eq. (5) is formally identical to the
propagation equation in a chiral material in the Cartesian
system with ϵ̄ ¼ diagðϵk; ϵ⊥; ϵzÞ, μ̄ ¼ diagðμk; μ⊥; μzÞ and
κ ¼ diagðκ; κ; κzÞ [45]. Notably, κ decouples from the
anisotropic background as a purely geometric effect and
appears in both D̄ and B̄ even for the nonmagnetic system.
Besides providing a simple example for our theory, the
CLC model can be used to analytically design chiral
metamaterials.
We compare the CLC model with 3D chiral metamate-

rials consisting of arrays of subwavelength helical inclu-
sions such as spiral ladders or helices [42–44]. As shown in
Figs. 2(b) and 2(c), the chiral inclusions can be obtained
from an anisotropic background by the helical coordinate
transformation x0α ¼ ½Rz�αβxβ [58]. This transformation
also models other helical systems including discrete screw
dislocations [59] and helical waveguides [60,61]. The
corresponding transformation medium is given by
ðϵ0; μ0Þ ¼ J−1Jzðϵ; μÞJTz with

Jz ¼

0
B@

cos θ − sin θ −ωsy

sin θ cos θ ωsx

0 0 1

1
CA; ð7Þ

here ðϵ; μÞ are the same as χ in CLCs. In contrast to the
CLC model where each point twists locally, the helical
coordinate transformation twists globally, leading to the
nonvanishing radius dependent iz components in Jz.
Consequently, the volume preserving Eq. (7) describes a
screw dislocation whose Burgers vector can be defined on
arbitrary loops encompassing the screw axis. Despite the
difference, the two models are equivalent with each other in
the infinitesimal limit. Consider a 2D array of meta-atoms
made from Eq. (7), the lattice constant p defines a cutoff
length for the meta-atoms. If p cannot be neglected
compared to the wavelength λ0, the response may lead
to additional resonances depending on p and the constitu-
ent composition. When p=λ0 ≪ 1, the iz components of Jz
are practically negligible, and the lattice of meta-atoms
converges to CLC. In the homogenization language, the
Riemann-Cartan description is the effective medium of the
chiral metamaterial consisting of screw dislocated meta-
atoms, and torsion emerges as the homogenization limit
of the locally Riemannian spaces of isolated dislocations.
To our best knowledge, our theory provides the first
concrete illustration for the homogenization picture of
torsion, which has been proved with rigorous mathematics
for the edge dislocations only recently [62].
In addition to anisotropy, chiral materials can be con-

structed from isotropic materials with local inhomogeneity.
The metric description fails for χk ¼ χ⊥ in the CLC model
when χ 0 ¼ χ ∝ diagð1; 1; 1Þ, while the Riemann-Cartan
description remains valid. It follows that there exist no
chiral medium with ϵ ¼ μ ¼ 1, κ ≠ 0. Furthermore, more

FIG. 2. (a) Schematics of a CLC (right) and the anisotropic
background (left). (b),(c) Unit cells of typical 3D chiral meta-
materials consisting of spiral ladders and helices (right) and the
anisotropic backgrounds (left). The bars are real nanostructures.
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complex chiral structures can be realized for applications
by (pieced) continuously or randomly distributed [63] or
oriented bases.
Discussion and conclusion.—We finally comment on the

basic feature of the transformations of coordinate and local
orthonormal basis. The coordinate transformation defines
an elastic deformation where the displacement vector
specifies the translational d.o.f. In contrast, utilizing ortho-
normal bases violates the Frobenius integrability condition,
and it is impossible to find a coordinate transformation
to generate the orthonormal bases êα, which defines the
independently rotational d.o.f. Physically speaking, the
cross-coupling of fields produces a phase difference
between states of opposite helicities, leading to optical
activity. Geometrically, the polarization rotation can be
interpreted as the parallel transport of the polarization
vector in the local frame, whereas Cγ

αβ plays the role of
Berry curvature [64]. In this sense, the chiral materials can
be regarded as the optical Cosserat continua which are
elastic micropolar media with the internal torque [47].
In summary, we have developed a metric-torsion theory

for light propagation in chiral structures. Our theory not
only provides a unified geometrical insight for chiral
materials based on frame transformation but also introduces
an analytical approach for the practical device design with
chiral materials. It may offer a platform to simulate wave
propagation in the torsional space-time which remains
inaccessible in gravitational physics.
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