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Mechanical contraction in muscle cells requires Ca to allow myosin binding to actin. Beating
cardiomyocytes contain internal Ca stores whose cytoplasmic concentration oscillates. Our theory explains
observed single channel dynamics as well as cellular oscillations in spontaneously beating cardiomyocytes.
The Ca dependence of channel activity responsible for Ca release includes positive feedback with a delayed
response. We use this to predict a dynamical equation for global calcium oscillations with only a few
physically relevant parameters. The theory accounts for the observed entrainment of beating to an
oscillatory electric or mechanical field.
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Cardiac contraction is a process driven by calcium
oscillations, coupled to the mechanical, actomyosin con-
traction of the heart cell [1] [see Fig. 1(a)], and has a typical
timescale of ∼1 Hz [2–4]. This is achieved by numerous
types of ionic pumps and channels embedded in the cellular
membrane and in an organelle called the sarcoplasmic
reticulum (SR) [5–8], which permeates the entire cell
volume and serves as an internal Ca2þ reservoir. Calcium
dynamics are schematically shown in Fig. 1. In muscle cells,
Ca2þ is usually maintained at low concentrations in the
cytoplasm and high concentrations in the SR. Spontaneous
activation of a the cardiac cell is usually induced by
fluctuations or changes in ion channel and pump activity,
which causes an influx of Ca2þ ions into the cytoplasm. The
Ca2þ then activates SR embedded ryanodine receptor (RyR)
channels which further release the Ca2þ stored in the SR
into the cytoplasm in a process known as calcium-induced
calcium release (CICR) [5]. After a certain amount of Ca2þ
is released, RyR channels close and ionic pumps restore the
cytoplasmic Ca2þ concentration to its baseline value [5]. An
important observation is that RyR channels show an adaptive
response to changes in Ca2þ concentration [9]. Experiments
demonstrated that the opening probability of RyR channels
sharply increases in response to a rapid increase in Ca2þ
concentration from ∼0.1 to ∼10 μM, and shows exponential
relaxation to a steady-state value with a typical timescale
of ∼100 ms [9]. This observation motivates and is explained
by our theory for local, single channel dynamics, which we
then extend to explain global, spontaneous calcium oscil-
lations in the entire cell.
The Ca2þ released by the channels diffuses to the vicinity

of the contractile units (sarcomeres) in these cells and
allows myosin binding to actin and hence contraction [10].
It is worth noting that mechanical oscillations of actomyo-
sin at a much faster timescale have been observed in other
in vivo [11–14] and reconstituted systems [15]. However, in

cardiomyocytes Ca2þ oscillations persist even when con-
tractility is nearly abolished by introducing blebbistatin
[16], indicating that Ca2þ is indeed the driving force behind
contraction in muscle cells.
Previous models of calcium dynamics [17–24] focus

on the short time, molecular details of the coupled,

FIG. 1. Schematic representation of calcium dynamics in
cardiac cells. A Ca2þ influx from the environment to the
cytoplasm occurs due to fluctuations in calcium channels and
pump activity. This causes a release of stored Ca2þ from the
sarcoplasmic reticulum (SR) through SR embedded RyR chan-
nels. The increase in cytoplasmic Ca2þ concentration facilitates
both contraction of actomyosin in sarcomeres and further opening
of RyR channels (green arrows). Eventually, RyR channels close,
and various ion pumps and channels restore Ca2þ to its original
concentration (dashed lines), and the cycle begins again.
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multicomponent kinetic processes that underlie Ca2þ oscil-
lations. A key feature of many of those models is the
slow regulatory process that causes a time delay in the
response of calcium channels to changes in cytoplasmic
Ca2þ [17–20]. Here, we show that such a time-delayed
response is crucial to obtain spontaneous oscillations. We
first focus on single channel dynamics and feedback which
we then extend to a predictive, mesoscale theoretical
approach for global Ca2þ oscillations in the cell. We begin
with a model of the RyR channel kinetics and their
sensitivity to the Ca2þ kinetics via the CICR mechanism,
which is consistent with the in vitro observations of
changes in the channel opening probability dynamics.
This is then used, together with a kinetic rate equation
for the global Ca2þ concentration, to analytically predict a
transition from a stable steady state to spontaneous oscil-
lations at frequencies much smaller than the channel
opening or closing kinetic rates.
We start by describing the dynamics of the average RyR

channel probability PðtÞ [ð1 − PðtÞ] to be open [closed],
and begin with the naive assumption that the rate constants
for opening and closing (R�) react to the instantaneous
Ca2þ concentration [CðtÞ]:

_P ¼ RþðCÞ − ½RþðCÞ þ R−ðCÞ�P: ð1Þ

The Ca2þ dynamics are described by a simple minimal
kinetic equation:

_C ¼ JP − KC: ð2Þ

Thus, the system has only two time-dependent degrees of
freedom P and C. In general, both the opening and closing
rates of the channel R�ðCÞ can be calcium dependent, and
are on the order of ∼100 Hz [19,25]. The theoretical
treatment is the same even if the closing rate is independent
of calcium [see Supplemental Material (SM) [26]]. Calcium
induces RyR channel opening for low (micromolar) con-
centrations, and channel closing for high (millimolar)
concentrations. [5,6,18,27]. Equation (2) relates the change
in intracellular calcium concentration to the opening
probability multiplied by the maximum Ca2þ current
JðCÞ > 0 from the SR to the cytoplasm. We start with
the case where the current is independent of the cytoplas-
mic Ca2þ [i.e., JðCÞ ≈ J] and show later on that nonlinear
terms (which can come from calcium dependence of the
flux) are crucial to stabilize the amplitude of oscillations.
The calcium loss term proportional to K accounts (in a
lumped manner) for numerous mechanisms such as SR
Ca2þ-ATPase activity, membrane bound Naþ-Ca2þ pumps,
and mitochondrial Ca2þ uniports. All of these reduce the
cytoplasmic Ca2þ concentration [5]. The steady-state
solution of Eqs. (1) and (2) is given by P̄ ¼ RþðC̄Þ=R,
with R ¼ ½RþðC̄Þ þ R−ðC̄Þ� the combined rate at steady

state, and C̄ ¼ JP̄=K the cytoplasmic, steady-state
Ca2þ concentration. We next examine small perturbations
about this steady state by defining the scaled variables c ¼
ðC − C̄Þ=C̄ and p ¼ ðP − P̄Þ=P̄, and expanding Eqs. (1)
and (2) about the steady state to get the scaled equation
(see SM for derivation [26]):

_p ¼ R½−pðtÞ þ αcðtÞ�; ð3Þ

_c ¼ K½pðtÞ − cðtÞ�; ð4Þ

where α is a measure of the linearized dependence of the
rate equations on the Ca2þ concentration, and we take the
realistic limit of a channel which is mostly closed [9] (i.e.,
P̄ ≪ 1; see SM for full derivation [26]). The rescaled
channel dynamics is faster than the rescaled calcium
reclamation (R ≫ K), which implies that Ca2þ is slowly
varying while RyR channels are in a state of quasisteady
state. The experiments in Ref. [9] show that when calcium
is sharply increased from low (∼0.1 μM) to high
(∼1 or 10 μM) concentrations, pðtÞ initially overshoots
and then slowly relaxes to its steady-state values with a
typical timescale of ∼100 msec (see Fig. 2 of Ref. [9]). The
authors termed this an “adaptive response” of the RyR
channel which cannot be resolved by steady-state experi-
ments where the RyR opening probability is measured only
at long times [9]. The use of the naive approximation
Eq. (3) cannot explain these dynamical experiments
on single channels (see SM [26]) and Eq. (3) can only
explain RyR dynamics for a very slow increase of (∼10 sec
[9]) or fixed Ca2þ concentrations. In addition, Eq. (3)
predicts relaxational dynamics and not oscillations for the
global concentration. This is seen in the realistic limit of
R ≫ K, where we approximately write pðtÞ ≈ αcðtÞ, which
when used in Eq. (4) yields:

_c ¼ −Kð1 − αÞc; ð5Þ

yielding strictly relaxation dynamics. Thus, the adiabatic
dependence of the channel opening probability on the
instantaneous Ca2þ concentration alone in Eq. (3) is
insufficient also to explain spontaneous oscillations.
The observed “adaptive" response to a sharp increase in

Ca2þ can be accounted for by including the dependence of
channel dynamics not only on the adiabatic Ca2þ concen-
tration but also on the rate of change _cðtÞ of this concen-
tration. This rate dependence can originate, for example,
from a relatively long, delayed, regulatory response that
controls the rate at which calcium binds to the channel
[17,18,20]. We model such an effect in a generic manner by
supplementing Eq. (3) with a history-dependent adaptive
response, using a memory function with a rateH termed the
adaption rate:
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_p ¼ R

�
−pðtÞ þ αcðtÞ þ βH

Z
t

−∞
_cðt0Þe−Hðt−t0Þdt0

�
; ð6Þ

with β a proportionality constant. This predicts channel
dynamics consistent with the experiments of Ref. [9]. A
sharp increase in calcium is equivalent to _cðtÞ ∼ Δc δðtÞ,
which yields for our model a rapid increase in pðtÞ at short
times, followed by an exponential decrease to steady state.
For fixed or very slowly increased Ca2þ, the second term in
Eq. (6) is negligible and we reproduce the results of Eq. (3)
via the adiabatic term proportional to α. The added term ∼β
introduces an effective time delay in the RyR channel
response, where the channel takes time to adapt to the new
conditions imposed by changes in Ca2þ. This is analogous
to viscoelastic materials where the propagation of defor-
mation throughout a body is retarded by friction at the
microscopic level [28–30]. The channel response thus lags
behind the calcium variations, introducing an effective
memory to the system. To continue, we consider again
the realistic limit of R ≫ 1 Hz. The adaptation dynamics
(∼10 Hz) is still faster than the 1 Hz calcium oscillations,
which allows us to treat the integral in Eq. (6) as sharply
peaked around t ¼ t0 (since H ≫ 1 Hz). We therefore
expand the relatively slowly varying calcium cðt0Þ, for
small values of t − t0 > 0, to get

pðtÞ ≈ αcðtÞ þ βH _cðtÞ
Z

t

−∞
e−Hðt−t0Þdt0

þ βHc̈ðtÞ
Z

t

−∞
e−Hðt−t0Þðt0 − tÞdt0 þ � � � : ð7Þ

Integrating Eq. (7), we find pðtÞ ≈ ½αcðtÞ þ β _cðtÞ−
ðβ=HÞc̈ðtÞ�, where we kept the leading terms in H−1.
When introduced into Eq. (4) we get after some rearrange-
ment (see SM [26]):

c̈þ ϵ_cþ Ω2
cc ¼ 0; ð8Þ

with ϵ ¼ H½1=ðβKÞ − 1� and Ωc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − αÞH=β

p
, which

is indeed slower than channel dynamics (Ωc ≪ R). Here ϵ
is an effective dissipation term which is a net result of
pumps that remove Ca from the cytoplasm (positive) and
RyR channels (negative) that transfer Ca from the SR to the
cytoplasm. For ϵ > 0, small perturbations slowly relax back
to steady state (c ¼ 0). However, when the channel feed-
back exceeds an activation threshold Kβ > 1 (with higher
order corrections derived in the SM [26]), which leads to an
ever-increasing cytoplasmic Ca2þ concentration. Inclusion
of the adaptive term in Eq. (6) is therefore crucial to shift
the system from a stable steady state to spontaneous
oscillations. As is common in such negative dissipation
systems [31], this increase is saturated due to the presence
of higher-order, nonlinear dissipative terms to avoid di-
vergence. These terms can arise from several different

microscopic effects, such as expansion of the rates R� to
higher order than linear in the Ca2þ concentration or the
Ca2þ concentration dependence of the ionic flux through
the channel (see SM [26]). As is usual [31], here we include
such a term, proportional to Γ, phenomenologically:

c̈þ ϵ_cþ Γc2 _cþΩ2
cc ¼ 0: ð9Þ

Equation (9), derived using separation of timescales of
single channel dynamics and global calcium kinetics, is the
well-known Van der Pol equation for a nonlinear oscillator
[32]. For ϵ < 0; jϵj ≪ 1, the system shows spontaneous
oscillations with an approximate frequency Ωc and ampli-
tude ac ≈ 2

ffiffiffiffiffiffiffiffiffiffijϵj=Γp
. Since cells in experiments switch

stochastically between spontaneous beating and quiescence
[33,34], we expect those cells to lie close to criticality
(jϵj ≪ 1). In this regime the frequency scales like
Ωc ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − αÞKH
p

, which can indeed be of the order of
∼1 Hz. The adaptive, time-delayed response of the RyR
channel results in an effective “inertia” (which similarly
expresses the time-delayed response of CICR activation)
and “negative dissipation,” which are crucial to generate
spontaneous Ca2þ oscillations as observed in cardiac cells
[2–4,34,35]. One way to show this is by slowing the
adaptation rate H, to the extent that RyR channels cannot
adjust to calcium modulations. This can be achieved by
decreasing MgATP concentrations in the cell, which was
shown, in single channel experiments, to increase the
adaptation time to ∼1.5 sec [9]. We predict that a
significant change in the Mg concentration in cardiomyo-
cytes may cause spontaneously beating cells to switch to
quiescence.
In the SM [26] we compare the approximate, single

effective Eq. (9) for calcium oscillations with the full
dynamics of Eqs. (4) and (6). The amplitudes and frequen-
cies predicted by the intuitive, approximate, Eq. (9), match
those of the numerical solution of the full dynamics given
by Eqs. (4) and (6) (see SM [26]). Inclusion of additional
nonlinearities in the “dissipation” (terms proportional to
∼_c) and “stiffness” (terms proportional to ∼c) can modify
the waveform and frequency of the oscillations compared to
the sinusoidal-like predictions of Eq. (9). Those then
become more similar to observed oscillations, with a sharp
increase in concentration followed by a slow quiescence
(see SM [26]).
Next, we consider a beating cell in the presence of an

external pacing force. Calcium oscillations can be paced
either electrically [36–39] or mechanically [33,34]. For
electrical pacing, the cell is subject to an external electrical
field which causes voltage sensitive ion channels on the
cell membrane to open, inducing an influx of ions to the
cytoplasm [40]. For mechanical stimulation, the cell is
subject to an oscillating mechanical force which can couple
to the cell membrane (or the SR), through integrin adhesions
[41]. The tension applied to the cell membrane (or the SR
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membrane) can modulate the activity of mechanosensitive
protein complexes which, in turn, modifies the kinetics of
calcium release from SR [42]. Effectively, the tension
translates into a flux of Ca2þ into the cytoplasm (either
from the environment or from the SR).
To account for such direct pacing we add an external,

oscillating pacing force fðtÞ ¼ apΩ2
c cosðΩptÞ on the right-

hand side of Eq. (9), where ap and Ωp are, respectively, the
amplitude and frequency of the pacing (the Ω2

c factor is
introduced so that ap is dimensionless). To proceed, we
follow Refs. [35,43] and examine the solution for the case
where the cell oscillations are entrained to that of the
applied force (i.e., the cell oscillates with the frequency of
the external force):

cðtÞ ¼ a cos ½Ωptþ ϕcðtÞ�; ð10Þ

where a is the steady-state amplitude of the resulting Ca2þ
oscillations and ϕcðtÞ is the phase relative to the external
pacing force. Using the methods of averaging [32,43], we
find that entrainment by the external force implies that the
phase must attain a constant value at long times (see SM
[26]) [44]. In this limit (ϕc → const) one can derive the
condition for entrained, steady-state oscillations:

Q ¼
���� ap
aðapÞ

1

ð1 − ω2
pÞ
���� ≥ 1; ð11Þ

where we define the dimensionless frequency ratio
ωp ¼ Ωp=Ωc. Generally speaking, the amplitude of
Ca2þ oscillations aðapÞ is a function of the amplitude of
the pacing forces ap. In the limit of weak pacing force
ap ≪ 1, the net Ca2þ oscillation magnitude can be approxi-
mated by its spontaneous value in the absence of pacing
aðapÞ ≈ ac. If the difference between the frequencies of the
cell and the external force is too large, or if the amplitude of
the external force is much weaker than the amplitude of
spontaneous Ca2þ oscillations, the cell will not synchronize
to the external force. Since the onset of full synchronization
begins when Q ¼ 1, for small pacing force, we can
analytically calculate a curve that gives the locus of the
onset of entrainment as a function of the amplitude and
frequency of the applied force:

ap
ac

¼ j1 − ω2
pj: ð12Þ

Figure 2 shows the analytical prediction for the onset of
entrainment as a solid black line, where above the curve the
cellular oscillations are entrained to those of the external
force and below the cell beats with a combination of the
spontaneous frequency and that of the pacing force. The
analytical approximation of Eq. (12) is compared in Fig. 2
to the numerically estimated onset of synchronization
[calculated from Eq. (9) with an added pacing term] by

fixing ωp and slowly increasing ap until entrainment is
observed. Regardless of the values chosen for the param-
eters ϵ and Γ, the estimated transition to entrainment occurs
for the same amplitude ratio. This suggests that entrainment
is only weakly dependent on the individual microscopic
model parameters (Rþ; R−; α; β; J; K) but is strongly de-
pendent on the emergent mesoscopic parameters (ac, Ωc)
scaled to those of the pacing force (ap, Ωp). In this manner
we obtain a universal curve in a plot of the amplitude ratio
ap=ac vs the frequency ratio ωp ¼ Ωp=Ωc. The analytical
estimate of Eq. (12) (the dashed curve in Fig. 2) matches
the numerics as long as the difference between the
spontaneous and external force frequencies is small
(ωp ≈ 1), with larger deviations for larger frequency
differences. When the cell amplitude aðapÞ is estimated
directly from the numerical solutions of Eq. (9) and the
ratio ap=aðapÞ is plotted instead, the numerics match the
curve for all values of rescaled probe frequency ωp (Fig. 2,
inset). This suggests that the Ca2þ amplitude scales in a
way that indeed maintains a fixed value of Q ≈ 1 for the
transition to entrainment. Note that a complex model for

FIG. 2. Analytical and numerical calculations, and experimen-
tal data, showing the onset of synchronization as a function of
amplitude (ap=ac) and frequency (ωp ¼ Ωp=Ωc) ratios. Param-
eters were chosen at the edge of the physical range to explore the
most dramatic changes. The black line is the analytical approxi-
mation of Eq. (12) (valid when ωp ≈ 1). The blue dashed line
connects the averages of the numerically calculated values (a
guide to the eye). Below the curve (shaded area), the beating
dynamics contains both the cell and the probe frequencies, while
above the curve, cells are entrained to the external force (i.e., they
beat with frequency Ωp). Color legend: (blue) ϵ ¼ −0.1;Γ ¼ 5,
(orange) ϵ ¼ −0.5;Γ ¼ 1.4, (green) ϵ ¼ −0.02;Γ ¼ 10. Purple
circles show the reproduced data from Ref. [34], showing
entrainment for a fixed amplitude ratio estimated by the transition
from entrained to nonentrained beating at ωp ≈ 2.5. Inset: Same
numerical results plotted for the amplitudes ratio ap=aðapÞ,
where aðapÞ is evaluated directly from the numerical solution.
Black curve given by Eq. (12) where the amplitude of oscillations
a is not approximated by ac, but rather extracted from the
numerical calculations.
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synchronization of Ca2þ oscillations in hepatocytes (solved
numerically) in Ref. [23] results in a similar plot for the
onset of entrainment. When our intuitive method is applied
(see SM [26]) to that model for the same parameter values,
it results in a single equation similar to Eq. (9) that predicts
both negative dissipation (ϵ < 1) and a frequency of
∼0.04 Hz, comparable with the numerically calculated
frequency of ∼0.035 Hz reported in Ref. [23]. Our result
suggest that, regardless of the microscopic parameters, the
dynamic response of paced cells should scale with the ratio
of the mesocopic parameters (amplitude, frequency).
Indeed, in Ref. [34] cardiac cells that were paced mechan-
ically (with amplitude a ∼ ac) were reported to entrain to
the frequency of the probe up to frequency ratios ωp < 2.5.
Above this threshold, beating switched to a combination of
the frequencies of the cell and the probe. In the context of
our theory, this corresponds to a crossing of the curve in
Fig. 2 from the fully entrained to the nonentrained regime.
In Fig. 2, we also reproduce the experimental data of
Ref. [34] for entrained cells, where we fit the measured,
experimental transition point at ωp ≈ 2.5 to the correspond-
ing theoretical amplitude ratio ap=ac ≈ 3.6 obtained from
the numerical solution of the paced Eq. (9) (consistent with
the reported protocol of the experiment).
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