PHYSICAL REVIEW LETTERS 122, 197702 (2019)

Rectification of Spin Current in Inversion-Asymmetric Magnets
with Linearly Polarized Electromagnetic Waves

Hiroaki Ishizuka' and Masahiro Sato®
lDepartment of Applied Physics, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
2Department of Physics, Ibaraki University, Mito, Ibaraki 310-8512, Japan

® (Received 9 November 2018; revised manuscript received 4 February 2019; published 15 May 2019)

We theoretically propose a method of rectifying spin current with a linearly polarized electromagnetic wave
in inversion-asymmetric magnetic insulators. To demonstrate the proposal, we consider quantum spin chains
as a simple example; these models are mapped to fermion (spinon) models via Jordan-Wigner transformation.
Using a nonlinear response theory, we find that a dc spin current is generated by the linearly polarized waves.
The spin current shows rich anisotropic behavior depending on the direction of the electromagnetic wave. This
is a manifestation of the rich interplay between spins and the waves; inverse Dzyaloshinskii-Moriya, Zeeman,
and magnetostriction couplings lead to different behaviors of the spin current. The resultant spin current is
insensitive to the relaxation time of spinons, a property of which potentially benefits a long-distance
propagation of the spin current. An estimate of the required electromagnetic wave is given.
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Introduction.—Manipulation of magnetic states and spin
current is a key subject in spintronics [1]. In conductive
materials, the charge current is often used for such
purposes; magnetic domain walls are moved by spin-
transfer effect [2], and spin Hall effects are used to generate
spin current [3—6]. Spintronics using magnetic insulators is
also studied, which have several advantages over the
metallic materials; magnetic excitations in the insulators
typically have a longer lifetime and no Ohmic loss. The
magnetic states and excitations of these insulators can be
controlled by electromagnetic waves. For instance, laser
control of magnetizations [7—12], magnetic interactions
[13], and magnetic textures [14—19], spin-wave propaga-
tion by focused light [20,21], etc. have been extensively
studied both experimentally and theoretically. These stud-
ies demonstrated the high potential of the electromagnetic
wave in controlling the magnetic states and opened a
subfield utilizing lights, called optospintronics [9,22].

In contrast, the manipulation of the spin current carried by
magnetic excitations is limited to ferromagnets (spin pump-
ing) [23-25]. On the other hand, other magnetic states
(antiferromagnetic, spiral, spin liquid states, etc.) potentially
have different advantages such as faster response [22]. One
issue, however, lies in moving the magnetic excitations; the
magnetic excitations do not accelerate or drift by the electro-
magnetic field because they are chargeless. This problem is
potentially solved by utilizing the nonlinear response of
magnetic insulators [Figs. 1(a) and 1(b)]. In the nonlinear
optics of noncentrosymmetric electron systems [26-28],
a nontrivial dynamics of electrons during the transition
process induces a “shift” of the particle position [29-32].
Recent experiments investigating this mechanism find
the current propagates faster than the quasiparticle
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velocity [33,34]. In addition, it is insensitive to the quasipar-
ticle relaxation time. A spin current with such interesting
properties is potentially possible if the shift mechanism of
magnetic excitations is generated by the electromagnetic
waves.

To investigate the control of spin current, we here
explore the generation of spin current by the shift mecha-
nism in a quantum spin chain model [Fig. 1(a)]. We show
that the spin current is indeed generated by simply applying
a linearly polarized electromagnetic wave if the system
possesses one of the three kinds of spin-light couplings:
inverse Dzyaloshinskii-Moriya (DM), Zeeman, and mag-
netostriction couplings. These couplings give rise to rich
features in the frequency dependence and anisotropy.
Interestingly, the spin current is generated by a different
transition process from the electronic photogalvanic effect.
The estimate of the magnitude of spin current shows our
proposal gives an observable spin current with a reasonable
strength of electromagnetic wave.

Noncentrosymmetric spin chains.—An S = 1/2 spin
chain with staggered exchange and the magnetic field is
used to study the photovoltaic effect of spin current. The
Hamiltonian reads

H = J[+(=1)8)(S;S5,, + SIS},

=D _[n+ (=1)h]S;. (1)

Here, S} are S = 1/2 spin operators on site i, J is the
exchange coupling whose energy scale is usually in giga-
hertz or terahertz regime, % is the uniform magnetic field
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FIG. 1. Noncentrosymmetric spin chains considered in this work.
Schematic picture of (a) a dimerized spin chain and (b) an
antiferromagnet of weakly coupled spin chains in a staggered
magnetic field. The model consists of two magnetic atoms
with different g factor and alternating bonds. Band structure of
Jordan-Wigner fermions for (¢) 6=h,/J=0, and (d) 6 = 1/3,
and hy/J = 1/10.

along z axis, and A is the staggered magnetic field. This
model has a wide range of applications. An obvious
application is to the one-dimensional dimerized XY spin
chains with two alternating ions [Fig. 1(a)]. In this case, the
staggered magnetic field A, reflects different g factors for
the odd- and even-site spins [35—40]. The model can also be
viewed as the effective model for a Néel ordered Ising-like
spin chain [41-43] at zero temperature 7 = 0 in which the
Ising interaction J,S7S;,, is treated via the mean-field
approximation S7 = (S;) + (57 — (S;)). For the Néel
ordered state, the field (—1)A; is the sum of the external
staggered field and the mean field J,(S;) = (=1)'J, M (M
is the staggered magnetization). Furthermore, Eq. (1) can
also be applied to three-dimensional antiferromagnets
of weakly coupled spin chains under a staggered field
[Fig. 1(b)]. Treating the interchain coupling by a mean-field
theory [44—47] gives an effective one-dimensional model,
Eq. (1). Namely, in this system, the staggered field A, is
renormalized by the interchain Néel order. Note that the
dimerization parameter 0 and the staggered field &, break
site-center and bond-center inversion symmetries, respec-
tively. Such a noncentrosymmetric nature is necessary for a
photogalvanic effect.

The spin model in Eq. (1) is mapped to a fermion model
using Jordan-Wigner (JW) transformation [48-50]. By

=l gt g
—in E STST o
lntI'OdUCll’lg fermion operators c¢; = e J=170 T S and

Ci = Sl.*e”’zle i 55 Eq. (1) is fermionized as

I D =L L
+ T (= 1)ihn, 2)

Here, S& = §¥ +iS) are the ladder operators and n; = cTc
is the number operator for the fermions at the ith site.
Figures 1(c) and 1(d) show the band structure of the JW
fermions. The model has a band gap A, /), = 2/ J28% + h?
for |5| < 1 [Fig. 1(d)], while the gap is Ay = 2+/J* + h2 if
|6| > 1. The model is gapless only if 7, = & = 0 [Fig. 1(c)].
Therefore, the ground state is robust against & as long as
h < A/2, where A = min(A,, A,,/z). We focus on the weak
h region of this model in the rest of this work.

The spin current operator for S° is defined from the
continuity equation. The current density operator reads

1
Jsc EZZ‘][

where L is the number of sites; here, we set the Planck
constant 7 = 1.

Inverse DM coupling.—External electromagnetic waves
couple to spins in several different forms. First, we consider
the coupling of the electric field to the electric dipole
induced by the inverse DM mechanism [51-55]:

+ (=181, 87 - Sin S, (3)

Hipm = Ey(t>Z[P + (=D'pJ(Si x Sixn)™ (4)

i

Here, the chain is along the x axis, p F p; is the coefficient
for the ferroelectric polarization of odd and even bonds, and
E,(t) = E, cos(wt) is the oscillating electric field along the
y axis with frequency o (typically, gigahertz or terahertz).
Note that at a special point p,/p = 6, the term Hipy; is
analogous to the linear-order coupling of the electrons to
the vector potential. We will comment on this case later.

The spin current conductivity is calculated using a
quadratic response formula similar to that for photovoltaic
effects [56]. The formula reads

/ Jp(k)|Bog (k)
2rw— 8/3 k)—i—ea( )—i/(27)
« < B/Jy(k)']ya(k) _ Jﬁy(k)Bya(k) >
€a(k)_€y(k)_i/(27) ey(k)_€ﬂ<k)_i/(27) ’
(5)

where ¢,(k) is the eigenenergy of an ath-band state
with momentum k (|ak)), f,(k) = (1 + e“w/sn)=l jg
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the fermion distribution for |ak), 7 is the relaxation time
of JW fermions, J,5(k) = (ak|J|pk), and B,4(k)=
(ak|Hpm|Pk). In electronic systems, this formula well
explains the experimentally observed nonlinear conductiv-
ities [57]. Hereafter, we consider the 7= 0 case of the
model in Eq. (2). The conduction and valence bands
[Figs. 1(c) and 1(d)], respectively, correspond to a = +
and —. We focus on the real part of 62) (w) because only the
real part contributes to the spin current. With these
simplifications, Eq. (5) becomes

Re[o ()]
1 B, (K)J_ (K)[B__(k) = B, (k)]
Vﬁ%g:wtkﬂﬂu—whw }<®

provided that &, and |B, _|? are even with respect to k.
Using Eq. (6), the nonlinear conductivity in the 7 — oo
limit becomes

hs(ps - pé)(p - pxé)
2nw?J* (1 — 8%)?

(@2 = A2,,)(8F - o). (7)

when A < < W =max(Ay, A,/;). On the other hand, no
spin current appears for a frequency @ < A or W < w,
which implies that an interband optical transition is
necessary for the spin current. Figure 2(a) shows the
result forJ = 1,6 = 1/3, and h; = 1/10. The conductivity
becomes zero when A, =0 or p;, = 6 = 0 and is propor-
tional to h,(p; — pS). These features reflect the symmetry
property of the conductance. The model becomes inversion
symmetric when iy, =0 or p, =0 =0, and therefore,
the conductivity vanishes. For the noncentrosymmetric
chain, the inversion operation imposes the following
relations: o) (w; 8, hy, p,) = —0'P (w; =6, hy, —p,) and
o (w;8, hy, p,) = —6®) (w36, —hy, ps) [58]. Hence, the
lowest order terms in the symmetry-breaking parameters
are proportional to A 0 or hgp,. Another important feature
is that the spin current vanishes when 6 = p,/p. This is a
well-known result in the photocurrent; the photocurrent
induced by the linear-coupling terms vanishes in two-band
models [56]. In contrast, in general, a finite spin current
appears in our case because B,;(k) is generally different
from the current operator.

We find that the nonlinear conductance in Eq. (7) shows
a characteristic structure when the frequency is close to A,
i.e., close to the lowest frequency with nonzero Re[c® (w)].
The asymptotic form of Re[o(?) (w)] reads 6 (w) « Véw,
where dw = w — A [58]. This frequency dependence is
related to the momentum dependence of g(k)=
B, _(k)J_(k)[B__(k) — B, (k)] at the band edge. The
real part of g(k) is always zero in our model. Therefore,
Eq. (6) becomes

Re[6) (w)] = sgn(1 — &)

05 (Asym. Ex.) (Asym. Ex.)
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FIG. 2. Frequency dependence of the nonlinear conductivity
¥ (w) forJ = 1,6 = 1/3,and h, = 1/10. Panels (a)~(c) are the
results for 7 — oo with (a) inverse Dzyaloshinskii-Moriya cou-
pling with p = 1, (b) Zeeman coupling, and (c) magnetostriction
effect with A = x and A; = 1 — x. Different lines in (a) and (c)
are the results for different ratio of parameters p,/p and A/B,
respectively. Panels (d)—(f) show the 7 dependence of (d) inverse
DM coupling with p =1 and p, = 0.2, (e) Zeeman coupling,

and (f) magnetostriction effect with A = 1/3 and A, = 2/3.

_ LImig(ko + k)]

2) =
? (w) 8 €+(k0+k(u)

ples(ko + k). (8)

where p(¢) is the density of states (DOS) and k,, > 0 is a
wave number such that o = e, (ko + k,,) — e_ (ko + k).
Here, k is the location of the band bottom; it is ko = 7/2
(kg =0) when 1>8 (1 <é%. By definition, dw =
e, (ko + k,) —e_(ko+k,)—A and k, >0 when
dw — 0. The asymptotic form g(ky + k,,) k7, makes
o (w) x 60""V/? through the relations dw k2 and
p « 1/+/dw. For the present case, g(ky + k,,) k2 leads
to 6 (w) x V/dw. In other words, the asymptotic form of
0 (o) reflects g(k), i.e., By(k). As shown below, a
different asymptotic form of g(k) and ¢®)(w) appears
for different kinds of spin-light couplings.

Zeeman coupling.—The Zeeman coupling also contrib-
utes to the spin current. We here consider an oscillating
magnetic field B(t) = B cos(wt) parallel to the magnetic
moments. The Hamiltonian reads
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Hy=-B(1)) 1~ (=1)n]s:. ©)

1

This is in contrast to the case of usual spin pumping
[23-25], in which an oscillating magnetic field
perpendicular to the magnetic moment is considered.
The spin current is calculated using Eq. (6) by the
replacement B,;(k) — (ak|H|pk). The result reads

8 1 —8%)6J*hn?
0(2)(0)) _ Sgn( ) sTs

- . (0)
m0? (0 — AL) (AF ~ )

at T =0 and 7 — oo. The photocurrent depends on the
staggered magnetic field 7, and not on 5. This follows from
the form of the two-band equation in Eq. (6). Naively, three
terms appear for H,, which are proportional to #2, 71, and
n*. However, the i term has B(k) = niaﬂ for one of the
two Bs(k)’s in Eq. (6) [B_(k) or B__(k) — B, (k)]. As
B+—(k) = B——(k) - B++(k) =0 for Ba/i(k) = ’71(1/1’ the
nn, term vanishes. Similarly, the #> term also vanishes.
Hence, only the staggered magnetic field contributes to the
spin current.

A notable difference from the inverse DM case appears
at the lower edge of the spectrum at @ = A. Figure 2(b)
shows the result of 6(?) for 7, = 1. The conductivity shows a
divergence; the asymptotic form is ¢ (w) « 1/+/6w [58].
The divergence is a consequence of the asymptotic form of
g(k), which behaves differently from the asymmetric
exchange case; g(k) for the Zeeman coupling become a
constant when @ \ A. The substitution of g(k) into Eq. (8)
gives the asymptotic form ¢ « p(k,)  éw~'/?. Hence,
the divergence reflects the structure of the DOS.

We also note that our models discussed here strictly
conserve the angular momentum. The optical switching
[66] and generation [67] of angular momentum in elec-
tronic systems were recently studied in metallic systems.
Here, the spin-orbit interaction plays a crucial role, which
transfers the angular momentum from the lattice (atoms). In
contrast, our model strictly conserves the total angular
momentum for S¢; the spin current is generated without
generating the angular momentum. This is analogous to the
photovoltaic effect where the electric current is induced
without generating an electric charge.

Magnetostriction effect.—Magnetostriction effect also
leads to a coupling between local exchange interaction
and an external electromagnetic field [54,55,68-71]; the
Hamiltonian reads

Hyy = E()S A+ (1 AY(SIS, + SIS, (11)

1

Here, A and A, are the uniform and staggered magneto-
striction terms, respectively, and E(t) = E, cos(wt) is the

oscillating electric field along the x axis. A (Ay) is the
magnetostriction effect for J (J§).
The solution for H,; at 7 = 0 and 7 — oo reads

~ sgn(1 — &%)h;
4na?J2(1 — 62)2\/(012 ~A2,)(A] - a?)
x {A(A;), — @) + A8(0” - A7)}
x {A;(A] = @) + Ad(0® = A7 )} (12)

6@ () =

Figure 2(c) shows the @ dependence of ¢(? (@) for J = 1,
6=1/3, and h, = 1/10. Unlike the other two cases,
the asymptotic structure at @ ~ A changes depending on
Aand A,. When 6% < 1, a divergent structure similar to the
Zeeman coupling, 6\? (w) ~ (1/v/éw), appears for A, # 0.
On the other hand, the conductivity smoothly goes to zero
at o = A for A, = 0; in this case, (¥ (w) = dw/? at the
lower edge. Therefore, the magnetostriction effect also
contributes to the spin current with a characteristic behavior
at the lower edge w ~ A. Further details are presented in the
Supplemental Material [58].

Relaxation time dependence.—The t dependence of a
light-induced current often reflects its microscopic mecha-
nism. For instance, in the study of photovoltaic effect, shift
current does not depend on z, while the injection current is
linearly proportional to 7 [26,30]. The numerical results of
o2 (w) for different 7 are shown in Figs. 2(d)-2(f); each
panel shows the results for [Fig. 2(d)] asymmetric
exchange, [Fig. 2(e)] Zeeman, and [Fig. 2(f)] magneto-
striction couplings. All results are calculated using L = 24
site chains with periodic boundary condition. The result
shows that the photo-spin current is insensitive against the
value of 7. Therefore, the spin current is robust against the
suppression of the relaxation time. This behavior is similar
to the shift current in electronic photogalvanic effects,
which is related to the shift of the center of the mass during
the optical transition [58].

The robustness against z is potentially beneficial for
applications. The energy scale for the magnetic excitations
in magnetic insulators is smaller than the electron excita-
tions in semiconductors. Therefore, a change in the temper-
ature affects the magnetic excitations more seriously. In
particular, the effect of thermal fluctuations often appears
as the decrease of the lifetime. Therefore, the insensitive-
ness of ) () to 7 implies the weak effect of heating to the
conversion efficiency.

Discussion.—In this work, we explored the generation of
spin current using nonlinear response. To this end, we
considered simple but realistic quantum spin chains with
three different types of couplings between spins and
electromagnetic field: inverse DM, Zeeman, and magneto-
striction couplings. The spin current generated by all three
mechanisms is independent of the relaxation time of the
magnetic excitation. However, our simple model shows the
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spin current appears from different microscopic processes
compared with the relaxation-time-independent electronic
photocurrent (shift current) [29,30,56]. This feature is
crucial for magnets as the total number of the bands is
much less than the electronic bands. Therefore, our
proposal for the spin current is generally expected in
simple magnetic structures.

Another interesting feature is the anisotropy of the spin
current. In our model, the spin current by inverse DM and
magnetostriction couplings can be switched by rotating the
electric field; the field along the y axis gives the inverse DM
component while x gives the magnetostriction. Similarly,
Zeeman coupling contributes when the magnetic field is
along the z axis. This anisotropy in the microscopic
mechanism is reflected in the frequency dependence.
Experimentally, the observation of the anisotropy distin-
guishes the microscopic mechanism of the spin current.

We also stress that the mechanism of generating spin
current differs from spin pumping [23-25]. Unlike the spin
pumping, all three mechanisms we considered preserve the
spin angular momentum along the z axis. Therefore, in
contrast to the spin pumping, no angular momentum is
supplied from the electromagnetic waves. The conservation
decidedly shows that the spin current studied here is by the
nontrivial motion of magnetic excitations.

There are several experimental setups for observing the
spin current of our mechanism. The most straightforward
setup is to use an isolated magnet without any attached leads.
In this setup, the spin current accumulates the angular
momentum to the edges of the sample. In our mechanism,
the sign of angular momentum accumulated to one edge is
the opposite of that to the other edge because the photovoltaic
effect carries the angular momentum of one end to the
opposite end. Therefore, observation of the accumulated
angular momentum by Kerr effect or Faraday rotation should
provide evidence for the flow of angular momentum.

Alternatively, the spin current should be measurable using
the inverse spin Hall effect [72—74]. In contrast to the spin
pumping case [23,24], however, the attachment of two leads
(“source” and “drain”) is useful for our mechanism because
our mechanism does not generate angular momentum in the
magnets. The angular momentum flows from one lead
(source) to the other lead (drain) if our mechanism is
dominant. [58]. In contrast, the spin currents in the two
leads both flow outward in spin pumping or spin Seebeck
effect [75,76]. Hence, the two-lead setup should distinguish
different mechanisms.

Finally, we compute the strength of an ac electromag-
netic field required for an observable spin current. The
spinon spin current is already realized in the experiment
which is generated by the spin Seebeck effect [76]; we here
use the magnitude of the observed spinon current as the
reference. Using the above results, the required fields are
estimated as E ~ 103, 10%, and 10?> V/cm for the cases of
inverse DM, Zeeman, and magnetostriction couplings,

respectively [58]. Therefore, the spin current generated
by all three couplings should be observable in experiments.
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