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Geometrically frustrated interactions may render classical ground states macroscopically degenerate.
The connection between classical and quantum liquids and how the degeneracy is affected by quantum
fluctuations is, however, not completely understood. We study a simple model of coupled quantum and
classical degrees of freedom, the so-called Falicov-Kimball model, on a triangular lattice and away from
half-filling. For weak interactions the phase diagram features a charge disordered state down to zero
temperature. We provide compelling evidence that this phase is a liquid and show that it is divided by a
crossover line that terminates in a quantum critical point. Our results offer a new vantage point to address
how quantum liquids can emerge from their classical counterparts.
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Liquids are characterized by the absence of long-range
order. In exceptional cases, a classical liquid state may
persist down to zero temperature [1,2]. The ensuing ground
state is macroscopically degenerate and characterized by a
finite entropy. Such a degeneracy in the energy landscape
can result from competing interactions, geometric frus-
tration, or near phase transitions where different states
compete. The proliferation of low-energy states renders the
system unstable towards the emergence of novel and often
exotic ground states.
An interesting and still open issue concerns the relation

between classical and quantum liquids, i.e., how quantum
fluctuations affect the classical ground state manifold [3,4].
Another pertinent issue of practical relevance is the stabi-
lity of such liquid phases with respect to, for example, the
itinerary of the frustrated degrees of freedom (d.o.f.). Any
attempt of answering these questions is faced with the
principal difficulty that quantum fluctuations of competing
interactions, covering a wide energy range, need to be taken
into account.
In this Letter, we identify liquid phases that are driven by

a coupling to quantum d.o.f. Depending on whether the
quantum variables acquire a nonzero mass, the nature of the
liquid phase changes. To this end, we study the Falicov-
Kimball model (FKM), a hybrid model comprised of
itinerant fermions that interact arbitrarily strongly with
localized charges, on a triangular lattice. This model is well
suited to address some of the unresolved issues mentioned

above and, in addition, allows for an effective, numerically
exact Monte Carlo sampling of its partition function [5,6].
The FKM can be thought of as a special case of the

Hubbard model with infinite mass imbalance between
the two spin species, thus rendering the dynamics of the
heavier one classical. The position of these classical
charges is annealed over an energy landscape defined by
the itinerant d.o.f. The model has been instrumental in
benchmarking the standard approach to strongly correlated
lattice models, i.e., the dynamic mean field theory, and its
extensions [7–12]. More recently, it has attracted interest
in the context of disorder-free many-body localization
[6,13,14]. For bipartite lattices, several exact results have
been established [15,16], including the existence of a
charge density wave (CDW) at low temperature (T) for
all interaction strengths. The melting of the CDW state with
increasing T was observed for commensurate fillings [15–
18]. On the triangular lattice the FKM and its extensions
display a variety of different ground-state phases [19–23].
For incommensurate fillings the FKM favors phase sepa-
ration [5]. Recently, it was demonstrated that the half-filled
model on the square lattice is nonmetallic at all non-
vanishing values of the interaction strength U and tran-
sitions from Anderson to Mott insulators as U is varied [6].
An effective model for the classical charges can be

derived perturbatively at sufficiently small coupling t=U,
where t is the hopping strength of the itinerant electrons. At
half-filling and for large U=t, the FKM is equivalent to the
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antiferromagnetic Ising model. Thus, on the square lattice,
order ensues at sufficiently low T whereas the large-U limit
remains disordered for all T on the triangular lattice [1].
While it is an interesting question how this gets modified in
the presence of quantum fluctuations [24], the parent state
at large U is already a liquid. Here, however, we will in
what follows demonstrate that a classical liquid state can
result from an ordered phase, due to coupling to a
quantum field.
The Hamiltonian of the FKM is

H ¼ −t
X

hiji
c†i cj þ U

X

i

c†i cinf;i − μc
X

i

c†i ci − μf
X

i

nf;i;

ð1Þ
where c†i creates a c electron and nf;i, a conserved quantity,
counts the number of immobile classical charges on site i,
and μ is the chemical potential of the system. t will be used
as a unit of energy (t ¼ 1). The summation

P
hi;ji runs over

all nearest-neighbor pairs on a triangular lattice with a
volume V ¼ L2 (L being the system’s linear dimension)
and periodic boundary conditions. As the collection of nf;i
constitutes a set of conserved quantities, the partition
function is given by a summation over noninteracting
contributions for every configuration nf of f charges
and thus can be evaluated by an efficient Monte Carlo
sampling [5,6]. An additional difficulty arises as the
chemical potentials μcðT;U; LÞ and μfðT;U; LÞ need to
be self-consistently determined to ensure constant occu-
pation as a function of T, U, and L (Ref. [25], S2).
In the following, we consider a macrocanonical ensem-

ble with the chemical potentials μc and μf determined such
that xc ¼ Nc=V ¼ 2=3 and xf ¼ Nf=V ¼ 1=3, where
Nc ¼ hPi c

†
i cii and Nf ¼ P

ihnf;ii, see, however, the
Supplemental Material S6 [25]. Our findings are summa-
rized in the phase diagram of Fig. 1. At large U and
sufficiently low T, [T < TcðUÞ], the system develops a
CDW. For large T and/or U, the phase diagram resembles
that of its counterpart on the square lattice. While this could
have been anticipated, there are important differences with
regard to the type of order, see below. The most surprising
feature is the two regions at low T and small U, labeled
classical charge liquid (CL) and quantum charge liquid
(QL), respectively, that remain disordered down to the
lowest T. At large U, the T-driven phase transition is
continuous and within the universality class of the three-
state Potts model. For small U, our data point to a
discontinuous transition between the CDW and the CL
down to TcðUcÞ ¼ 0, corresponding to Uc ≃ 5.2. For large
T, a “strange metal region” (WL) is found, where the
electrons are weakly localized, followed by an Anderson
insulating (AI) and finally a Mott insulting (MI) phase as U
increases which arises due to the condition xc þ xf ¼ 1,
generalizing the half-filling condition of the (spinfull)
Hubbard model. The WL region is only stabilized by

the finite extent of the system and is expected to vanish in
the thermodynamic limit [6]. AI is characterized by a finite
density of states (DOS) at the Fermi level and a volume-
independent inverse participation ratio (IPR). In the MI
phase, the chemical potential lies within a U-dependent
spectral gap. This all closely resembles earlier findings for
the FKM on a square lattice of Ref. [6], where a full
characterization of these phases, including a discussion of
the optical conductivity, can be found. In what follows, we
focus on the fundamentally new features that emerge from
the interplay of localized and itinerant d.o.f. in a geomet-
rically frustrated environment.
In the expansion in terms of t=U, higher order terms

beyond the nearest-neighbor Ising-like interaction propor-
tional to t2=U can be systematically derived [26]. In next-
to-leading order, i.e., t3=U2, it yields a term that couples the
d.o.f. on a triangular plaquette. The range of the effective
interaction increases with powers of t=U, increasing the
frustration that eventually leads to the melting of the order.
This procedure is carried out in Ref. [25] up to order t4=U3.
At large U, the effective term together with the xf ¼ 1=3

restriction favors the existence of a low-T ordered phase
possessing a threefold degeneracy. A possible order para-
meter for this phase is ϕ1=3 ¼ ð3=VÞPr e

ið2π=3Þðrx−ryÞnf;r
that equals ϕ1=3 ¼ 1; eið2π=3Þ or eið4π=3Þ depending on which
of the three degenerate ground states is realized. One such

FIG. 1. (a) Phase diagram of the FK model on the triangular
lattice in the T-U plane for xf ¼ 1=3 and xc ¼ 2=3. The red star
indicates the quantum phase transition between the liquid states.
The inset depicts a sketch of the phases in the thermodynamic
limit. Band structure assuming CDW order for U ¼ 2 (b) and
U ¼ 5 (c).
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configuration is depicted in the inset of Fig. 1, while the
others can be obtained by a translation.
The order parameter symmetry implies that the associ-

ated finite-T transition belongs to the two-dimensional
three-state Potts model universality class. We find for
the correlation length exponent ν ¼ 0.8031ð114Þ
(cf. ν3Potts ¼ 5=6 [31]) and for γ, the exponent of the T
dependence of the susceptibility of the f charges, γ ¼
1.4748ð329Þ (cf. γ3Potts ¼ 13=9 [31]); for details, see the
Supplemental Material [25].
The specific heatCv across the charge ordering transition

for U ¼ 7 is shown in Fig. 2(c). A high-T local maximum
(not shown in the figure) coincides with the T scale where
double occupancy is sharply suppressed as T is lowered. At
lower T, the divergent Cv, confirmed by the finite-size
scaling, corresponds to the transition into the CDW state.
The static susceptibility, χðω → 0; q; TÞ is depicted in
Fig. 2(f). It shows a maximum at the propagation vector
QCDW of the CDW, i.e., q ¼ QCDW ¼ 2π=3f1; ffiffiffi

3
p g.

Figure 2(e) (orange line) shows that, for T < Tc,
χðω → 0;QCDW; TÞ ∝ L2, in line with the existence of
long-range order. The reconstructed band structure of the c
electrons within this symmetry broken phase at T ¼ 0 is
given in Fig. 1(c); μc lies in the U-dependent band gap.
Assuming that the ordered phase persists as a function of U
one expects an indirect closing of the band gap for U ¼ 3.
Figure 1(b) shows the band structure forU < 3. The charge
order, however, vanishes at Uc > 3; see Fig. 1(a).

We now address the region U < Uc. Figures 2(a) and
2(b) show CvðTÞ in this region for a representative value of
U within the QL and CL, respectively. The high-T features
are similar to those found for U > Uc. In contrast to the
U > Uc case, CvðT; LÞ remains nonsingular for L → ∞,
indicating that the transition has been replaced by a
crossover. The insets of Figs. 2(a) and 2(b) depict CvðTÞ
on a logarithmic scale and indicate that the behavior is
compatible with power-law scaling in T implying gapless
excitations in the system. The fact that both power laws are
distinct highlights that there are indeed two different T ¼ 0
phases. Moreover, neither is compatible with Fermi-liquid
behavior, i.e., with CvðTÞ ∝ T. Within these phases,
χð0; q; TÞ is no longer maximal for q ¼ QCDW but rather
for q ¼ QMax ¼ πf1; 1= ffiffiffi

3
p g, as shown in Fig. 2(d) for CL

(similar for QL). Interestingly, QMax corresponds to the
wave vector of a CDW expected for filling fractions xf ¼
1=4 and xc ¼ 3=4; see Fig. 2(d). However, the order
parameter ϕ1=4 of this phase, explicitly given in
Ref. [25], vanishes (see below). The scaling of
χð0;QMax; TÞ with L shown in Fig. 2(e) (blue line) is
χðω → 0;QMax; TÞ ∝ La with a ≃ 0.0616, which indicates
that the CL region is incompatible with the existence of
long-range order of that type. To further substantiate the
characterization of the liquid region, we turn to a principal
component analysis (PCA) [32] of the charge excitations in
CL and CDW. This method allows for a dimensional
reduction when visualizing multivariate data [27].
Figures 2(g) and 2(h) show the projection of different
thermalized configurations onto the three principal com-
ponents obtained by a PCA analysis including uncorre-
lated configurations at different T, see the Supplemental
Material (S4) [25]. In the ordered phase, low-T configu-
rations cluster around one of the three ground states; see
Fig. 2(h), which correspond to two principal components.
Within the CL region, however, configurations cluster on a
fourfold symmetric structure corresponding to three prin-
cipal components. Note, however, that this does not imply
the existence of a long-range ordered fourfold state, which
is incompatible with the 1=3 filling, unless phase separation
occurs. A vanishing order parameter and associated sus-
ceptibility χð0;QMax; TÞ ¼ χðLÞ as L → ∞ is, however,
incompatible with phase separation, see Fig. 2(e) [25].
Another possibility in line with the power-law behavior

in χðLÞ and CvðTÞ for T → 0 is the occurrence of a phase
transition, at a T near the low-T peak in the specific heat, to
a KT-like phase, lacking long-range order. Indeed, KT
transitions can occur for clock models with Zq symmetry
[33]. While our numerical results alone cannot exclude
this scenario, this only arises for clock models with q > 4
[33–35]. Moreover the system seems to retain its full
symmetry, isomorphic to the permutation group and not
just a Z4 subgroup.
The only viable alternative for the low T, low U regions

of the phase diagram is the existence of charge liquid states,

FIG. 2. Specific heat as a function of T for U ¼ 2 (a), U ¼ 5
(b), and U ¼ 7 (c). Momentum resolved susceptibility of the f
charges χðqÞ for U ¼ 5 (d) and U ¼ 7 (f). (e) Finite size scaling
of χðQMaxÞ with L. PCA yielding (g) the 3 most important
components for U ¼ 5 and (h) 2 for U ¼ 7, plotted for a range of
T for L ¼ 20 and L ¼ 21, respectively, see Supplemental
Material (s4)[25].
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connected by a smooth crossover to the charge-disordered
state at high T. The observed behavior in Cv vs L is indeed
in line with such a crossover, see Figs. 2(a) and 2(b) as is its
T → 0 behavior, as discussed above.
In order to understand the difference between CL and QL

we study the properties of the c electrons through their
DOS and IPR. Figure 1 shows the liquid region is
intersected by the AI-MI crossover line defined by the
vanishing of the DOS at zero energy. At T ¼ 0, this
crossover line should terminate in a continuous Mott
transition separating two phases where the c electrons
pass from being gapless to being gapped as U increases.
Figures 3(a) and 3(c) show the DOS as a function of energy
for two values of U; one below (a) and the other (c) for U
above the AI-MI crossover line separating the QL and CL
regions. Figure 3(c) shows that in the MI side there is a
region around ω ¼ 0without c-electron states in contrast to
the finite DOS around ω ¼ 0 seen in Fig. 3(a). The inset of
Fig. 3(c) depicts the behavior of the DOSðω ¼ 0Þ vs U for
different T showing a sharp drop. This sharp drop is used to
determine the crossover line.
Figure 3(b) shows an example of the IPRðωÞ in the

vicinity of the Fermi energy and its scaling with system size
for a case where IPRðω ¼ 0Þ converges to a finite value
as a function of L. Figure 3(d) depicts the scaling of
IPRðω ¼ 0Þ as a function of system size. The crossover line
separating the WL from the AI region signals the locali-
zation-delocalization transition of the c electrons and is
obtained from the scaling behavior of IPRðω ¼ 0Þ with
volume. This IPRðω ¼ 0Þ line can be continued into the QL
region; see Fig. 1.
The WL is expected to vanish as the thermodynamic

limit is taken [6]. However, there is the interesting

possibility that the fate of the delocalized region as the
thermodynamic limit is taken, is different from that of WL,
as the sampled disorder configurations in the CL region are
highly correlated. This would allow for an itinerant c
electron phase in the thermodynamic limit. Our data,
however, do not permit us to discriminate between these
scenarios due to dominating finite-size effects.
Figure 4(a) shows the order parameters of ϕ1=3 and ϕ1=4

of the (full) FK model. The inset shows that the amplitude
of ϕ1=4 vanishes in the thermodynamic limit as La with
a ≃ −1.
Within our numerical precision, the nature of the

CL-CDW transition in Fig. 4(a) is compatible with a
discontinuous transition with double-peaked distribution
of the order parameter and energy. The Binder cumulant,
however, remains positive near the transition (see the
Supplemental Material [25]). In order to avoid spurious
finite-size effects we only consider L ¼ 12, 24, which
are commensurate with both the CDW and the incipient
1=4-filling ordered background.
To further analyze the origin of the CL phase we turn to a

study of the effective classical model, see the Supplemental
Material [25], using a Monte Carlo algorithm. Figure 4(b)
depicts the same quantities but for the effective classical
model obtained by truncating the expansion to fourth order
and where the effective couplings are replaced by their
T ¼ 0 limits. The inset of 4(b) schematically depicts the
different coupling terms of the effective Hamiltonian. In
contrast with the FK model the truncated one exhibits a
phase separated state at small U characterized by a non-
vanishing value of ϕ1=4. Figure 4(c) shows ϕ1=3 and ϕ1=4
for an effective model with the same type of interactions as
4(b) but with the coupling constants determined by linear
regressions [28], explicitly given in Ref. [25]. The inset
demonstrates that ϕ1=4 indeed vanishes albeit with a
different power of the linear system size a ∼ −1=2.
In the QL, the gapless quantum d.o.f. induce long-range

interactions among the classical charges. In contrast, for the
CL, we expect that an effective Hamiltonian exists in terms
of short-ranged classical charges. Up to fourth order,
however, neither the truncated model nor the variational

FIG. 3. c-electron properties: DOS forU ¼ 1.6 (a) andU ¼ 2.7
(c) for T ¼ 0.015. Inset of (c) shows DOSðω ¼ 0Þ vs U for
different T. IPR as a function of energy for different system sizes
(b). (d) Scaling of the IPRðω ¼ 0Þ as a function of U. Data
obtained from simulations with 100 000 Monte Carlo steps with
correlation times of at most 20 steps.

FIG. 4. Order parameters ϕ1=3 and ϕ1=4 for (a) the FK model,
(b) the effective classical model truncated to 4th order, (c) an
effective variational model, with couplings determined by a linear
regression. The inset of (a) and (c) show the scaling of the ϕ1=4
with system sizes for U ¼ 5, respectively, for the FK and
variational models. The inset in (b) depicts the schematic
couplings between sites obtained up to 4th order.
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one seem to capture the properties of the CL phase.
Apparently, higher order terms are necessary to fully
capture the properties of this phase. We thus have obtained
an unexpectedly rich phase diagram of the 1=3-filled FKM
on the triangular lattice: for intermediate-to-large coupling,
the T-driven phase transition from the charge-ordered to the
disordered phase belongs to the three-state Potts model
universality class; more importantly, for weak coupling and
low T, we show the existence of a charge liquid region
divided by a crossover line that terminates in a QCP at
UQCP. The classical liquid, which ensues for U > UQCP, is
expected to be captured by an effective, finite-ranged
classical model. However, we were not able to obtain such
a model with terms up to the fourth order in terms of t=U.
Approaching the QCP from within the CL, the gap of the
quantum d.o.f. vanishes at UQCP. This phase transition is
reflected in the behavior of the specific heat which changes
from Cv ∝ T2 to Cv ∝ T4 as UQCP is crossed. To better
understand the differences between the full and the trun-
cated classical model it will be instructive to analyze the
effect of higher orders systematically [36].
Our results show how quantum liquids can emerge from

their classical counterparts. They also elucidate how classical
liquids form through melting of phase separated states in the
presence of frustrated interactions. Addressing the fate of the
charge liquids in the presence of nonvanishing hybridization
between the localized charges and the conduction electrons
is an interesting open question with immediate experimental
relevance [37,38]. Understanding the fate of the CL phase as
the FKM approaches the Hubbard model may help unrav-
eling the phase diagram of the Hubbard model on the
triangular lattice [39].
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