
 

Backscattering Immunity of Dipole-Exchange Magnetostatic Surface Spin Waves

M. Mohseni,1 R. Verba,2 T. Brächer,1 Q. Wang,1 D. A. Bozhko,1 B. Hillebrands,1 and P. Pirro1,*
1Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern,

67663 Kaiserslautern, Germany
2Institute of Magnetism, Kyiv 03680, Ukraine

(Received 19 October 2018; published 14 May 2019)

The existence of backscattering-immune spin-wave modes is demonstrated in magnetic thin films of
nanoscale thickness. Our results reveal that chiral magnetostatic surface waves (CMSSWs), which
propagate perpendicular to the magnetization direction in an in-plane magnetized thin film, are robust
against backscattering from surface defects. CMSSWs are protected against various types of surface
inhomogeneities and defects as long as their frequency lies inside the gap of the volume modes. Our
explanation is independent of the topology of the modes and predicts that this robustness is a consequence
of symmetry breaking of the dynamic magnetic fields of CMSSWs due to the off-diagonal part of the
dipolar interaction tensor, which is present both for long- (dipole-dominated) and short-wavelength
(exchange-dominated) spin waves. Micromagnetic simulations confirm the robust character of the
CMSSWs. Our results open a new direction in designing highly efficient magnonic logic elements and
devices employing CMSSWs in nanoscale thin films.
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Protected transport of energy and information has gained
a tremendous amount of interest during the last decade
[1–4]. Magnons, the quanta of spin waves (SWs), which are
the collective excitations of the spin ensemble of a
magnetically ordered system, are considered as a promising
counterpart to photons and phonons to serve as information
carriers in future wave-based data processing devices
[5–19]. For the design of magnon-based devices, decreas-
ing propagation losses is considered one of the biggest
challenges [18,20]. In addition to intrinsic magnetic losses
manifesting themselves in a viscous damping, external
losses mediated by surface defects such as fabrication-
induced disorders, roughness, and magnetic inhomogene-
ities generally contribute to the total losses. Therefore,
novel ways to avoid these scattering losses are highly
desired.
In fact, this has motivated a large number of theoretical

works, e.g., on the potential topological protection of SWs
[21–26]. Nevertheless, the observation of protected magnon
transport still remains a great challenge since most of
the proposed systems obtain their topological protection
from Dzyaloshinskii-Moriya interaction (DMI) [27–30] or
strongly inhomogeneous magnetic ground states [21]. Such
properties are hard to realize experimentally or can come
along with a detrimental influence on the propagation
properties [28,30]. Considering these facts, the prediction
of protected magnon transport that does not rely on
topological arguments would constitute a major break-
through [20].
Here, we introduce a mechanism of wave backscattering

immunity that is distinct to that topological protection. We

show that backscattering immune SW modes exist in
simple thin film systems that have homogeneous magnetic
parameters and do not exhibit DMI. In terms of applica-
tions, the studied system benefits largely from its simplicity
in comparison to artificially created metamaterials and
crystals for robust photonic [31,32], phononic [33], and
magnonic transport. We show that the protection of these
modes is caused by the chirality of the mode profiles of the
counterpropagating SWs. In particular, we present a theory
suggesting that chiral magnetostatic surface waves
(CMSSWs) are robust against backscattering from surface
defects. We further show that this protection is effective for
both dipolar waves as well as for short-wavelength waves
dominated by the exchange interaction. Using micromag-
netic simulations, we confirm the predictions of our theory
for an yttrium iron garnet (YIG) model system, which is the
most suitable host for SW propagation due to its low
intrinsic losses [6,8,9,12,13,18,34–38]. The obtained
results can be generalized to other materials, like metallic
alloys. The simulations also show that the protection
against scattering is particularly strong if the CMSSW
frequency is located in the frequency gap of the volume
modes (VMs, also known as perpendicular standing spin
waves), which opens due to the quantized exchange energy
in thin films. Therefore, the backscattering protection is
more pronounced in thinner films, in which the gap of VMs
is larger.
To illustrate the mechanism that leads to the chiral

protection of CMSSWs, Figs. 1(a) and 1(b) exemplarily
shows its mode profiles and dispersion relations in a YIG
film of thickness d ¼ 80 nm for typical values of the

PHYSICAL REVIEW LETTERS 122, 197201 (2019)

0031-9007=19=122(19)=197201(6) 197201-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.122.197201&domain=pdf&date_stamp=2019-05-14
https://doi.org/10.1103/PhysRevLett.122.197201
https://doi.org/10.1103/PhysRevLett.122.197201
https://doi.org/10.1103/PhysRevLett.122.197201
https://doi.org/10.1103/PhysRevLett.122.197201


exchange constant Aexch ¼ 3.5 pJ=m and saturation
magnetization Ms ¼ 140 kA=m. The case of CMSSWs
is realized when the film is magnetized in plane,

perpendicular to the wave propagation direction M0

�!⊥k⃗
[Fig. 1(a)]. This “Damon-Eshbach” geometry is well
studied in the case of pure dipolar (magnetostatic) SWs
in relatively thick films. SWs in this geometry are chiral
due to the off-diagonal part of the dynamic dipole-dipole
interaction, which breaks time-reversal symmetry (“T
symmetry”). This, among other things, leads to a nonre-
ciprocal localization of CMSSWs at the surfaces of the
film, which depends on the direction of the wave vector ky
[38–40]. Considering the nanoscale thickness of the system
studied here, both dipolar and exchange interactions are
important for the wave propagation.
Under these conditions, the dynamic magnetization

components of CMSSWs are weakly localized at one of
the surfaces [see Fig. 1(a) and 1(b)]. As also visible from
the dispersion relations shown in Fig. 1(b), higher-order
VMs are present in addition to CMSSWs. The exchange
energy contribution, which is quantized over the thickness

with a quantum proportional to 1=d2, leads to a frequency
shift of VMs above the CMSSW frequency. This implies a
frequency gap where only the CMSSW is present.
For comparison, we also study the case of a nonchiral

wave [Figs. 1(c) and 1(d)]: if the wave vector is parallel to

the static magnetization (k⃗kM0

�!
), so-called backward vol-

ume magnetostatic waves (BVMSWs) occur. For this
orientation, the dipolar interaction does not lead to broken
T symmetry.
As we already pointed out, the spatial localization of

CMSSWs at a film surface is weak in the studied systems.
To show how the chirality nevertheless leads to back-
scattering protection, the corresponding equations of
motion are analyzed. For the appearance of any chiral
and nonreciprocal effects, at least the T symmetry should
be broken. In principle, magnetization dynamics always
exhibits broken T symmetry, since magnetization precesses
always counterclockwise around the static field direction.
However, this is not a sufficient criterion. Indeed, the
propagation of small-amplitude SWs is described by the
following dynamical equations [41–42]:

dmx

dt
¼ −ðωH − ωMλ

2∇2Þmy − ωMhy ;

dmy

dt
¼ ðωH − ωMλ

2∇2Þmx þ ωMhx ; ð1Þ
where ωH ¼ γB, B is the static internal field, ωM ¼ γμ0Ms,
λ is the exchange length, hðrÞ ¼ R

Ĝðr; r0Þ ·mðr0Þdr0 is the
dynamic dipolar field with Ĝ being the magnetostatic
Green function, and the static magnetization is assumed
to be oriented along the z direction. If the off-diagonal part
of the dynamic interaction is zero Gxy ¼ Gyx ¼ 0, the
equation system (1) can be transformed to one equation
for mx (or my), which contains only second-order time
derivatives of mx, i.e., of the form d2mxðr; tÞ=dt2 ¼
F½mxðr; tÞ; r� with F being the integrodifferential operator,
which does not depend explicitly on the time t. In this
scenario, SW propagation exhibits T symmetry and does
not possess chirality by itself. This case is realized for
BVMSWs, as for these waves, the dynamical components
of magnetization (z and x in notation of Fig. 1) are not
dipolarly coupled.
In contrast, in the CMSSW geometry, the dynamic

magnetization components are coupled and Gxy ¼
Gyx ≠ 0. Consequently, Eq. (1) cannot be simplified to
one equation that contains only even time derivatives of
magnetization. Hence, T symmetry of CMSSW propaga-
tion is broken and these waves are chiral.
To understand how this chirality leads to protection

against backscattering, one first has to note that the nonzero
off-diagonal components of the dynamic dipolar interaction
result in a completely different symmetry for the dipolar
fields created by CMSSW and BVMSW (see Fig. 1). The
dipolar fields have to satisfy the electromagnetic boundary
conditions at any internal or external boundary, like the

FIG. 1. (a),(c) Profiles of CMSSWs and BVMSWs, propagat-
ing in opposite directions (color coded), and corresponding
distributions of the dynamic magnetic field h and the induction
b. Ellipses show the vector structure of the dynamic magnetic
field h. The color code indicates the sign of rotation of
the dynamic magnetic field. Film thickness 80 nm and
ky ¼ 25.9 rad=μm. (b),(d) Corresponding magnon band struc-
tures are calculated via numerical simulations (color plot) and
analytical calculations according to [41] (dashed lines). The
fundamental modes are distinguished via blue (CMSSW) and
orange (BVMSW) lines, and the higher-order volume modes via
black lines. Green dots indicate the modes exemplarily inves-
tigated in Fig. 2.
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boundary of a defect. Namely, this implies continuity of the
tangential component of the magnetic field h and of the
normal component of the magnetic induction b ¼ μ0
(hþm). In addition, the exchange interaction requires
continuity of magnetization and its spatial derivative.
The resulting different form of the created fields has
direct implications on the reflection and transmission of
the waves.
In the case of BVMSW, the dipolar fields for opposite

propagation directions are related by mirroring with
respect to the X0Z plane, and the spatial distribution of
the magnitude of the fields is the same [see Figs. 1(c) and
1(d)]. In this sense, forward and reflected waves match
each other, and direct reflection of BVMSWs into an
oppositely propagating wave can easily occur, satisfying
the boundary conditions. In contrast, dipolar fields of
oppositely propagating CMSSWs are related by sub-
sequent mirroring to the Y0Z and X0Z planes, respec-
tively. This is also sketched with the ellipses in
Fig. 1, showing the precession of the dynamic magnetic
field h. Consequently, the field strength at a given vertical
position differs significantly. This can, for instance, be
seen in the regions above and below the film. This feature
is due to the constructive and destructive interference of
the dipolar fields produced by the x and y components of
magnetization. In particular, this feature is still present
even in the case when the dynamic magnetization dis-
tribution in the film is uniform. Thus, dipolar fields of
forward and backscattered CMSSWs are “incompatible”
and CMSSWs cannot simply scatter to oppositely propa-
gating CMSSWs because of the impossibility of satisfying
the boundary conditions.
In order to shed more light on this “mismatch” of the

CMSSW profiles, we consider the following simple model.
We assume that only propagating CMSSWs are involved in
the dynamics. Furthermore, we represent the magnetic
fields at the boundary as the sum of the fields created
by incident CMSSWs, transmitted CMSSWs with ampli-
tude T, and reflected CMSSWs with amplitude R. The
regions before and after the boundary situated at y ¼ yg are
different only by their thickness. This corresponds, for
instance, to an unperturbed film in contact with a defect, as
is shown in Fig. 2. As was pointed out above, with
propagating CMSSWs only, it is impossible to exactly
satisfy the boundary conditions. In practice, other localized
evanescent waves are involved in the scattering process.
Nevertheless, we can find values of the transmission and
reflection coefficients that minimize the mismatch of the
fields at the boundary. The obtained values cannot be
interpreted as real transmission and reflection coefficients,
but they show the qualitative behavior of these coefficients
in different conditions.
Using the analytically calculated profiles of CMSSWs,

we construct the functional of integral mismatch of the field
hx at the boundary at the position y ¼ yg,

ΦhðR; TÞ ¼
Zþ∞

−∞
jhx;k1 þ Rhx;−k1 þ Thx;k2 j2dx :

Here, k1 and k2 are the wave numbers of incident and
transmitted spin waves, which are related by the dispersion
relation ω1ðk1Þ ¼ ω2ðk2Þ. The same functional was con-
structed for the mismatch of the component of the magnetic
induction by. As one cannot directly compare magnetic
field and induction, we minimize both functionals sepa-
rately assuming complex-valued coefficients R and T, i.e.,
allowing for an arbitrary phase shift between waves.
From this, we infer that the minima of mismatches of by

and hx take place for approximately the same transmission
rate T. However, at the same time, the reflection rate R has
opposite signs with similar magnitude for the two compo-
nents. In other words, the conditions of continuity of the
normal component of the magnetic induction and the
tangential component of the field imply that both act on
the reflected wave oppositely, i.e., with a phase shift of π.
This phase relation is a direct consequence of the specific
symmetry of the field profiles of the CMSSW and it
suppresses the formation of the reflected wave. This leads
to almost 100% transmission from the defect. The calcu-
lations also show that this feature—opposite signs of R—
remains valid for defect depths ranging from a vanishing
depth up to depths of about 50% of the film thickness.
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FIG. 2. Snapshots of the SW propagation in the presence
of a defect (gray rectangular). (a) CMSSW (f ¼ 4.64 GHz
and ky ¼ 25.9 rad=μm) (b) BVMSW (f ¼ 3.2 GHz and
ky ¼ 25.9 rad=μm). Direction of the applied field H0 is indicated
in the right corner. Transmitted and reflected waves are marked
with solid and dashed arrows, respectively. (c) SW transmission
for different SW modes as a function of the topographic defect
height. Lines are guides to the eye.
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In the following, we will verify the analytical predictions
using micromagnetic simulations. The simulations have
been performed via the MUMAX 3.0 open source software
[43]. The simulated film parameters are equivalent to
the ones of Fig. 1 and a Gilbert damping parameter of
α ¼ 0.0002 has been assumed. The external magnetic field
of 0.05 T is applied along the −z direction or þy direction
(see Supplemental Material [44] for more information).
To check for backscattering immunity, in Fig. 2(a), the

topographical defect (2 μm long), with a height equal to
h ¼ 20% of the film thickness d, is placed at one of the
surfaces of the film. Snapshots from micromagnetic sim-
ulations of propagating SW pulses with a length of 10 ns,
excited with a SW source at the center (y ¼ 0 μm), are
shown in Fig. 2 for three different times (t1–t3) before and
after reaching the defect.
In all presented cases, SWs with a wave vector of

ky ¼ 25.9 rad=μm, as indicated by the green dots in
Fig. 1, have been studied. For the CMSSW [Fig. 2(a)],
the system is excited with a carrier frequency of
f ¼ 4.64 GHz. In very good agreement with our predic-
tion, the CMSSW pulse (blue arrow to the left) passes the
defect without any significant reflection and reaches an
amplitude transmission close to 96% [see Supplemental
Material Fig. 2(a) [44] ]. However, in the case of the
BVMSW, shown in Fig. 2(b), the SW pulse undergoes a
strong backreflection when impinging on the defect and
only 62% of the wave is transmitted [see Supplemental
Material Fig. 2(b) [44] ].
In Fig. 2(c), we present a systematic characterization of

the scattering from topographical defects for the same
parameters as used in Figs. 2(a) and 2(b). We vary the
defect height (h) as displayed in Fig. 2(a) and evaluate the
transmission of the propagating SWs. It can be seen that,
for the CMSSW case, a defect can be as high as 40% of the
thickness, and still a transmission in the range of 90% can
be achieved. This is in good agreement with the estimation
from the analytical part presented above. A further increase
of the defect height creates a coupling channel, which
allows the wave to scatter to the other surface and propagate
backwards. In contrast, for the BVMSW case [Fig. 2(b)],
already a defect as high as 40% of the thickness is enough
to result in an almost complete reflection. Here, the
scattering takes place between ky and −ky of the same
mode. In addition, we verified that this strong scattering can
be observed over the whole wave vector range shown in
Fig. 1(d).
In Fig. 3(a), the transmission of CMSSWs for the same

system as discussed in Fig. 2(a) is shown as a function of
the excited wave vector. From small wave vectors starting
from ky ¼ 2 rad=μm (with dominant dipolar interaction) to
midrange ky ¼ 35 rad=μm (dipole-exchange waves), the
CMSSW transmission is around 95%. In this frequency
range [which is marked by the blue colored area of
Fig. 3(a)], the CMSSW lies inside the gap of the VM.

Therefore, no resonant scattering to the VM is possible due
to energy conservation.
A drop of the CMSSW transmission by roughly 20% is

visible in Fig. 3(a). This drop appears for wave vectors
ky > 36 rad=μm, when the CMSSW becomes frequency
degenerated with the first VM. This degeneracy enables a
resonant scattering from the CMSSW to the VM. This
supplies a channel for backreflection of SW energy. The
appearance of backscattered VMs is clearly visible in the
simulations [see Supplemental Material Fig. 3 [44] ].
It should be noted that the strong protection that is found

even for low wave vectors provides evidence that the
localization of the dynamic magnetization at a surface
plays no direct role for the protection. Indeed, the locali-
zation on one surface is proportional to the in-plane wave
vector ky [40], and, e.g., for ky ¼ 2 rad=μm, the amplitude
decays by only 4.2% from one side to the other and the
mode profile is nearly homogeneous.
As a next step, we will show that the strong protection of

CMSSWs in the thin film is a general phenomenon that is
present even for high wave vector SWs with a dominant
exchange energy contribution. Theoretically, this can be
predicted by evaluating the off-diagonal component of the
Green function, which is responsible for the specific
symmetry of dipolar fields of the CMSSW [41],

Gxyðky; x; x0Þ ¼
i
2
sgn½x − x0�kye−jkyðx−x0Þj : ð2Þ

FIG. 3. CMSSW transmission as a function of wave vector in
the presence of a 2 μm × ð20%of dÞ topographical defect for a
film with (a) d ¼ 80 nm and (c) d ¼ 30 nm. The blue area shows
the range of wave vectors inside the gap of volume modes where
the protection is strong. (b),(d) Indicates the relevant magnon
band structure of the systems and the corresponding frequency
gap, which is distinguished via the blue area. Please note the
different scales.
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The strength of the asymmetry can be naturally measured
by the difference of the off-diagonal contribution at the
opposite surfaces of the film. These can be estimated as
ð1 − exp½−jkydj�Þ. This term increases with ky, giving
insight into why CMSSW protection is present even in
the high-k exchange-dominated range.
In order to prove micromagnetically that the protection

still exists for exchange-dominated SWs, the scattering
study of Figs. 3(a) and 3(b) is repeated for a film with
d ¼ 30 nm, which is shown in Fig. 3(c). Because of the
stronger quantization, this system shows a much larger gap
of VMs and the protection of a shorter wavelength can be
tested without the occurrence of the scattering channel to
the VMs. Similar to the 80 nm film, the protection exists
as long as no resonant scattering to the VM is possible.
In this case, the maximal wave number at which CMSSWs
are not degenerated with VMs is ky ∼ 100 rad=μm. For
these waves, the exchange contribution to the SW energy
(∼ωMλ

2k2) is almost 4 times larger than the dipolar
one [∼ωMð1 − e−kdÞ].
In conclusion, we showed that chiral magnetostatic

surface waves, which propagate perpendicular to the static
magnetization in an in-plane magnetized thin film, are
robust against backscattering from surface defects. The
protection of the CMSSW can be understood without a
consideration of the topology of the system. It is strong if
the frequency lies inside the gap of the volume modes,
where no resonant scattering to or hybridization with other
modes is possible. It should be emphasized that this
protection takes place in ferromagnetic films with nano-
scale thicknesses both for the dipole-dominated and the
dipole-exchange range. It is also observed that the locali-
zation of the magnetization profile of CMSSWs is not the
protecting mechanism for backscattering. At the same time,
it is also observed for exchange-dominated waves, as long
as they lie in the gap of the volume modes. Absolute
protection of the CMSSWs is expected if the inversion
symmetry of the system is broken, e.g., using a bilayer to
design the magnon band structure and change the mode
profiles of the counterpropagating SWs. This knowledge
gives a new view on the role of the dipolar interaction on
exchange-dominated SWs. The thin film system proposed
here is the simplest medium for protected magnon transport
and probably, in general, protected energy transport
via waves.
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