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Direct numerical simulations of homogeneous sheared and stably stratified turbulence are considered to
probe the asymptotic high dynamic range regime suggested by Gargett et al. J. Fluid Mech. 144, 231
(1984) and Shih et al. J. Fluid Mech. 525, 193 (1999). We consider statistically stationary configurations of
the flow that span three decades in dynamic range defined by the separation between the Ozmidov length
scale LO ¼

ffiffiffiffiffiffiffiffiffiffiffi
ϵ=N3

p
and the Kolmogorov length scale LK ¼ ðν3=ϵÞ1=4, up to Reb ≡ ðLO=LKÞ4=3 ¼

ϵ=ðνN2Þ ∼Oð1000Þ, where ϵ is the mean turbulent kinetic energy dissipation rate, ν is the kinematic
viscosity, and N is the buoyancy frequency. We isolate the effects of Reb, particularly on irreversible
mixing, from the effects of other flow parameters of stratified and sheared turbulence. Specifically, we
evaluate the influence of dynamic range independent of initial conditions. We present evidence that the
flow approaches an asymptotic state for Reb ⪆ 300, characterized both by an asymptotic partitioning
between the potential and kinetic energies and by the approach of components of the dissipation rate to
their expected values under the assumption of isotropy. As Reb increases above 100, there is a slight
decrease in the turbulent flux coefficient Γ ¼ χ=ϵ, where χ is the dissipation rate of buoyancy variance,
but, for this flow, there is no evidence of the commonly suggested Γ ∝ Reb−1=2 dependence when
100 ≤ Reb ≤ 1000.

DOI: 10.1103/PhysRevLett.122.194504

Introduction.—Sheared, stratified turbulence, energized
by vertical shearing of horizontal motions in the presence
of a statically stable density distribution, arises throughout
the world’s oceans and atmosphere. Dynamical models of
such flows, in particular, capturing the vertical transport of
heat due to irreversible mixing, are essential for modeling
the global climate system because mixing occurs on
relatively small scales, several orders of magnitude below
those currently resolved in basin-scale models [1–3].
A key challenge for theoreticians is to develop a robust

parametrization usable in such models for the vertical eddy
diffusivity of heat κT defined as

κT ≡ B
N2

≡ h gρ0 wρi
N2

; N ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

g
ρ0

dρ̄
dz

s
; ð1Þ

where angled brackets denote ensemble averaging, B is the
buoyancy flux, N is the buoyancy frequency, g is the
constant gravitational acceleration, ρ0 is a constant refer-
ence density, ðu; v; wÞ and ρ are the fluctuating velocity
vector and fluctuating density, respectively, in the ðx; y; zÞ
coordinate system, and ρ̄ is the mean ambient density with
functional dependence in z. Here the Boussinesq approxi-
mation has been made such that density variations are

sufficiently small so that a linear equation of state is
appropriate and density variations are only significant in
the buoyancy force.
Developing dynamical models of these complex flows

has proved exceptionally difficult and controversial due
not least to their potential dependence on a wide range of
parameters [4,5]. For simplicity, we fix Pr ¼ ν=κ ¼ 1,
where ν is the kinematic viscosity and κ is the molecular
thermal diffusivity. Even with this assumption, stratified
sheared turbulence is influenced by at least four indepen-
dent length scales, associated with characteristic values
of overall stratification, shear and both the intensity and
decay rate of turbulence [4]. The Ozmidov scale LO, the
Corrsin (or shear) scale LC, the “large-eddy” turbulent
length scale LL, and the Kolmogorov microscale LK are
defined here as

LO ≡
�

ϵ

N3

�
1=2

; LC ≡
�
ϵ

S3

�
1=2

;

LL ≡ E3=2
k

ϵ
; LK ≡

�
ν3

ϵ

�
1=4

; ð2Þ

where Ek is the averaged turbulent kinetic energy, ϵ is its
dissipation rate, and S is the mean constant vertical shear,
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i.e., S≡ dū=dz, where ū is the mean streamwise velocity
with functional dependence in z. These four scales are
determined by the properties of the fluctuation velocity
field (i.e., the turbulence) relative to the background
buoyancy frequency and shear. As noted by Ivey et al.
[5], it is entirely plausible that length scales comparing the
perturbation scalar field to these background quantities may
be more physically relevant, although, particularly in such
stationary flows as those considered here, it is possible that
the various length scales may become closely coupled (as
we investigate further below).
Although in general the scales defined in (2) vary in

space and time (see, e.g., [6]), even in statistically sta-
tionary flows where characteristic values of these four
length scales can be identified, parametrization of key
properties of the flow could depend on at least three
independent nondimensional parameters determined from
these scales. Choices for these parameters are a character-
istic Richardson number (Ri), a turbulent Froude number
(Fr), and the activity parameter Reb (sometimes called the
buoyancy Reynolds number and formally distinct from a
related integral-scale quantity; see Portwood et al. [7] for
further discussion) defined as

Ri≡N2

S2
≡
�
LC

LO

�
4=3

; Fr≡ ϵ

NEk
≡
�
LO

LL

�
2=3

;

Reb≡ ϵ

νN2
≡
�
LO

LK

�
4=3

; ð3Þ

although alternative parameters can be defined, such as a
“shear number” S� ≡ ðLL=LCÞ2=3 ≡ SEk=ϵ≡ 1=ðFrRi1=2Þ
and others [4].
In terms of these parameters, the central challenge

regarding κT becomes that of determining the functional
dependence of κTðRi; Fr;RebÞ. In a profoundly influential
paper, Osborn [8] argued from consideration of the turbu-
lent kinetic energy equation that in stationary flows it is
reasonable to suppose that the buoyancy flux B, or
equivalently, for the stationary flows considered here, the
dissipation rate of buoyancy variance χ defined as

χ ≡ κ

�
g2

ρ20N
2
j∇ρj2

�
; ð4Þ

can be linearly related to the dissipation rate ϵ through a
“turbulent flux coefficient” or “mixing efficiency” Γ, i.e.,
χ ¼ Γϵ. Osborn hypothesized an upper bound for Γ ≤ 0.2
on semiempirical grounds, although in practice, Γ is
implemented as a constant saturating the upper bound
[3]. The introduction of Γ transforms the fundamental issue
of modeling κT into identifying the functional dependence
of ΓðRi; Fr;RebÞ, since κT ¼ νΓReb, provided the flow is
statistically stationary.
Many models have been presented for the functional

dependence of Γ based on observations, experiments, and

numerical simulations in a variety of different flows, with
much recent activity (e.g., [1,3,9–17]), though with little
sign of consensus, due principally to three fundamental
issues: (i) Disentangling transient and/or reversible proc-
esses from the irreversible processes crucial for quantifying
and parametrizing mixing is extremely challenging.
(ii) Even for flows where the assumption of stationarity
is appropriate, stratification in a gravitational field and
vertical shear both break isotropy, and so the extent to
which anisotropy is important is difficult to determine,
particularly when there is a relatively small dynamic range
between LK and minðLC; LOÞ (as encountered by Gargett
et al. [18]). The condition LC < LO is associated with
growing and stationary flow configurations, as necessarily
Ri < 1, suggesting that shear instabilities have to be
sufficiently vigorous to sustain turbulence. This has the
consequence that LC ≫ LK is a typical condition for high
dynamic range, i.e., RiReb ≫ 1 by the relations defined in
(3) and as suggested by Itsweire et al. [19]. (iii) Finally,
although in principle Reb, Ri, and Fr are all independent
parameters, there is emerging evidence (e.g., [20]) that in
many flows the parameters become correlated, and so an
apparent dependency of κT or Γ on one parameter is
actually associated with variation in another parameter.
To address all three issues, we consider the model flow of

stationary homogeneous sheared and stratified turbulence
(S-HSST) (e.g., [9,19,21,22]). In S-HSST, the production
of turbulent kinetic energy by uniform mean vertical
shear exactly balances the dissipation rates of kinetic
and potential energy by molecular motion, addressing issue
(i) by ensuring energetic stationarity by design. When
numerically simulated, the turbulence fills the flow domain,
provided that Reb is sufficiently large [23]. More generally,
stratified turbulence has been shown to exhibit different
dynamics depending on the value of Reb [9,24–27]. Gargett
et al. [18] observed in limited two-point statistics from
ocean data that Kolmogorov-Oboukhov-Corrsin (KOC)
scaling may be observed in stratified turbulence when
Reb ∼Oð103Þ and higher. De Bruyn Kops [26] observes
that KOC scaling is generally not observed in direct
numerical simulations up to Reb ¼ 220, though some
statistics may be consistent with such scalings. An impor-
tant open question is thus how stratified turbulence behaves
when Reb > Oð100Þ, a parameter space accessible by
modern simulations of S-HSST with sufficiently small Fr
for the stratification to have a first-order effect on the
turbulent dynamics. However, to address issue (ii), there is
the further constraint that RiReb ≫ 1.
In fact, in S-HSST Ri and Fr cease to be free, but

rather must adjust to ensure statistical stationarity. It has
been empirically observed in simulations that the various
dynamic length scales “tune” so that Fr ≈ 0.5 and
Ri ≈ 0.16, and equivalently, S� ≈ 5. An immediate conse-
quence of the emergence of an apparently Reb-invariant
stationary value of Ri in S-HSST is that issue (ii) can indeed
be addressed at sufficiently large Reb.
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Perhaps more importantly, issue (iii) is also addressed,
as the dependence of flow properties on Reb can be probed
independently of the other parameters. Specifically,
although the adjustment of Fr ≈ 0.5 and Ri ≈ 0.16 occurs
at Reb ∼Oð10Þ, other dynamical scalings have been
observed to change as Reb increases beyond Reb ∼
Oð100Þ [9,26]. The objective of this study is thus to
investigate how the key properties of the turbulence, in
particular, the energy partitioning, mixing, and small-scale
anisotropy, depend on variations of Reb. A specific ques-
tion to investigate is whether the postulated power law Γ ∝
Reb−1=2 [1,9,17] for sufficiently large Reb occurs in this
flow in which dependence on other flow parameters can be
completely eliminated.
Simulations.—The incompressible Navier-Stokes equa-

tions are considered, subject to the nonhydrostatic
Boussinesq approximation and coupled with equations
for continuity and buoyancy transport. A turbulent decom-
position is performed relative to a mean buoyancy gradient
and a mean streamwise velocity gradient, both in the
vertical direction, thus uniquely defining N and S (see
also [21,22,28,29]). We implement the system with the
same Fourier pseudospectral scheme described in [26,30],
except that an additional shear term is handled by an
integration factor [31–33].
Stationarity is induced by fixing a value of ν, choosing

a target turbulent kinetic energy Et then adjusting the
Richardson number via g (cf. [34]) using a mass-spring-
damper control system,

c0SRi0ðtÞ þ 2αωẼk
0ðtÞ þ ω2½ẼkðtÞ − 1� ¼ 0; ð5Þ

where the prime notation denotes a temporal derivative,
ẼkðtÞ≡ Ek=Et is the normalized turbulent kinetic energy,
ω is the characteristic frequency of oscillation, and α is a
dimensionless damping factor. The control system has been
derived by assuming that the kinetic energy follows a
second-order linear system (e.g., [35]), and then by applying
the first-order approximation Ẽk

0ðtÞ ≈ c0S½RiðtÞ − Ric� such
that Ẽk

00ðtÞ ≈ c0SRi0ðtÞ. The parameter c0 ≈ −1 is supported
by Jacobitz et al. [22], the characteristic frequency ω is
determined by the mean shear, and a damping coefficient
α ¼ 1.5 was found to work well.
Crucially, following this procedure, Ri ≈ 0.16 emerges

without presupposition for all our cases, as shown in Table I
along with other emergent parameters; flow statistics are
averaged over a period of St ≈ 100 unless noted otherwise.
Furthermore, the dissipation rate ϵ also tunes such that
Fr ≈ 0.5. As the dissipation rate is an emergent quantity, the
smallest length scales are resolved by adjusting the reso-
lution such that kmaxLK ≈ 2, where kmax is the largest
Fourier domain wave number. We also found it necessary to
use a relatively large domain with Lx=Ly ¼ 2, Lx=Lz ¼ 4,
and Lx=LL ≈ 40, where Lx, Ly, and Lz are the dimensions
of the domain, in order to support the anisotropic large
scales of the flow.

Results and discussion.—Energetics: We stress that,
although Ek ≈ Et is enforced, the parameters Ri, Fr, and
Reb emerge from the simulations, as do the structure of
the turbulence and the scalar. We consider the ratio of the
potential energy to kinetic energy RPK ≡ Ep=Ek and the
ratio of the potential energy to the kinetic energy of vertical
motion RPV ≡ Ep=Ev, where the energies are defined as

Ev ≡ 1

2
hw2i and Ep ≡ 1

2

�
g2=ρ20
N2

ρ2
�
:

Energy partitioning is a critical component to mixing
models wherein Reynolds number, or Reb, dependence
is often omitted and the mixing is assumed to be a function
of Ri [36–38]. Furthermore, in “strongly” stratified turbu-
lent flow, Billant and Chomaz [39] suggest that there
should be approximate equipartition between potential
and kinetic energy, i.e., RPK ≈ 1, an assumption also
used by Lindborg [40]. Figure 1 illustrates that this basic
assumption of equipartition is not appropriate here. Perhaps
more interesting, the energy ratios decrease by a factor of 2
relative to the lowest Reb case until Reb ≈ 300, after which
the energy ratios appear to remain constant with anisotropy
of velocity variance explaining the different behaviors of
RPK and RPV.

TABLE I. Simulation parameters. Nx is the number of grid
points in the x direction and the grid spacing is isotropic.

Case Reb Ri Fr Nx

SHSST-R1 36 0.163 0.46 1024
R2 48 0.159 0.47 1280
R3 59 0.162 0.48 1536
R4 81 0.154 0.50 1792
R5 110 0.155 0.52 2048
R6 160 0.157 0.48 3072
R7 240 0.156 0.48 4096
R8 390 0.146 0.46 6144
R9 550 0.163 0.45 8192
R10 900 0.152 0.42 9600

FIG. 1. Energy partitions as a function of Reb. Bars indicate
upper and lower quartilemeasurements of instantaneous quantities.
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Small-scale anisotropy: The observation of anisotropy
in the energy partitions of the previous section is par-
ticularly important, due not least to the inevitable require-
ment to estimate energetic dissipation rates in circum-
stances where each component of the rate-of-deformation
tensor is not available. The existence of anisotropy at
dissipative length scales would require dynamical estimates
of κT to account for anisotropy. Therefore, it is necessary
to evaluate common dissipation surrogate models to
assess their applicability and to characterize small-scale
anisotropy in these flows. Here, we use single component
surrogate models that rely on a single derivative and the
isotropy assumption,

ϵ̃ij ¼
8<
:

15ν
D�∂ui∂xj

�
2
E

if i ¼ j

15=2ν
D�∂ui∂xj

�
2
E

if i ≠ j;
ð6aÞ

χ̃j ¼ 3κ

�
g2

ρ20N
2

� ∂ρ
∂xj

�
2
�
: ð6bÞ

In flows that are inherently anisotropic due to mean shear
or mean flux, it is widely assumed that small-scale isotropy
is a reasonable assumption when the scale separation is
large (e.g., [18]). However, evidence suggests that isotropy
assumptions can be very inaccurate in stably stratified
flows at finite Reb [19,24,26,27].
The validity of (6) is tested with the help of Fig. 2 in

which is plotted the relative error ðϵ̃ij − ϵÞ=ϵ of the various
single-component dissipation estimates. As with energy
partition, there is an apparently asymptotic regime for
Reb ⪆ 300 in which the assumption of isotropy applied to
dissipation rate becomes valid within approximately 15%
error. Nevertheless, there is evidence of small-scale
anisotropy as expected from the analysis in Durbin and
Speziale [41], which shows that dissipation-range isotropy
should only exist when S� ≪ 1; in these simulated flows,
S� ≈ 5. However, we observe that ϵ̃22, ϵ̃33, and χ̃2 yield

good estimates of the dissipation rates even in cases in
which the small scales are strongly anisotropic.
Flux coefficient: We plot the turbulent flux coefficient

Γ≡ χ=ϵ in Fig. 3(a). Whereas there is some modest
decrease with increasing Reb from the peak Γ of approx-
imately 0.19, remarkably close to Osborn’s suggested
upper bound, there is no evidence of the commonly
suggested Reb−1=2 scaling (e.g., [1,9,17]). A decrease in
Γ with respect to Reb is observed until Reb ≈ 200, above
which Γ ≈ 0.17. There is no evidence of the “energetic”
regime of Shih et al. [9] for Reb > 100, suggesting that
transient multiparameter effects may well be relevant in the
evolution of their flows such that Reb is not always an
independent parameter [see issue (iii) as described in the
Introduction]. There is evidence that the upper bound
proposed by Osborn is a useful estimate, at least in flows
where the underlying assumption of stationarity is well
justified, as such flows naturally adjust to Ri ≈ 0.16
and Fr ≈ 0.5.
Alternative descriptions of the mixing behavior are

instructive. In the asymptotically high Reb regime, the
buoyancy variance dissipation rate adjusts such that
χ ≈ EpN as evidenced by Figs. 1 and 3. Although this is
a natural scaling, it is of interest that the Oð1Þ constant is
actually extremely close to 1. A second instructive descrip-
tion of mixing is the turbulent Prandtl number PrT¼κM=κT,
where κM is the eddy diffusivity of momentum,

κM ≡ huwi
S

¼ P
S2

; ð7Þ

and P is the production rate of turbulent kinetic energy.
Therefore,

PrT ¼ N2

S2
P
B
≡ Ri

Rf
≈
Rið1þ ΓÞ

Γ
; ð8Þ

where Rf is the flux Richardson number, and the relation-
ships P ≈ Bþ ϵ ¼ χ þ ϵ in a stationary flow have been
used. PrT is plotted in Fig. 3(b) and proves to be close to 1

FIG. 2. Instantaneous measurements of small-scale anisotropy. The dashed line represents perfect isotropy at small scales.
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for all values of Reb. This is perhaps unsurprising, but
makes clear that the turbulent processes that mix heat and
momentum in these flows are highly coupled, and in
particular, that the stratification is not sufficiently strong
to modify the turbulent processes greatly, but rather that the
irreversible conversion of kinetic into potential energy
occurs in a balanced, equilibrated way.
In particular, using mixing length arguments, Odier et al.

[42] defined

Lρ ≡
�

B
N2S

�
1=2

; Lm ≡
�
P
S3

�
1=2

; ð9Þ

such that L2
m=L2

ρ ¼ PrT . Therefore, since for our flows
PrT ≈ 1 and P ≈ ð1þ ΓÞϵ, it is apparent that the density
length scale at the heart of the model presented by
Ivey et al. [5] is coupled to the Corrsin scale by
Lρ=LC¼

ffiffiffiffiffiffiffiffiffiffi
1þΓ

p
, and the key parameter D≡ χ=ϵ ¼ 1=Γ

has a nearly fixed value.
Conclusions.—We have used a canonical controlled flow

to evaluate the isolated effects of high dynamic range in
sheared stratified turbulent flow. The energy partitioning
varies nontrivially where Reb ⪅ 300, above which an
apparently asymptotic regime is entered, consistent with
[18,26]. The flow retains measurable anisotropy at dis-
sipation scales, as suggested by the analyses of Durbin and
Speziale [41], at all values of Reb we have considered.
Nevertheless, some single-component surrogates exist that
accurately estimate dissipation rates via isotropy assump-
tions even for smaller Reb.

The results presented here seem to indicate that the
effects of the large dynamic range regimes explored by
Gargett et al. [18] are strongly influenced by asymptotic
scalar density dynamics, rather than by the velocity field
independently. Nevertheless, the measured mixing is a
much weaker function of Reb compared to some proposed
scalings [9], with the turbulent Prandtl number PrT ≈ 1 and
the turbulent mixing coefficient Γ near the classical bound
of 0.2 as suggested by Osborn, although decreasing slightly
for Reb ⪅ 300. The application of these results to higher
Prandtl numbers merits further study, where dynamic
range arguments indicate transition to asymptotic behavior
at lower Reb as Pr is increased.
We stress that the flow we have considered has, by

design, controlled dependence on all other parameters. Ri ≈
0.16 and Fr ≈ 0.5 naturally emerge to ensure stationarity.
Therefore, we conjecture that observed apparent variation
of mixing properties with Reb [17] can be explained by
breaking one or the other of these constraints; i.e., the
variation is due to either transient effects, well known to
lead to strong variation in mixing properties, e.g., [43,44],
or “hidden” and perhaps correlated variation with other
parameters, e.g., [16]. Additionally, there could also be as
yet unquantified strong dependence on initial or boundary
conditions, whereas the flow we have considered is isolated
from such effects. To develop robust mixing parametriza-
tions, it is necessary to develop appropriate models to
capture the effects of such conditions, informed by
and generalizing from such controlled, idealized flows as
considered here.
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