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We propose a generalized Dicke model that supports a quantum tricritical point. We map out the phase
diagram and investigate the critical behavior of the model through an exact low-energy effective
Hamiltonian in the thermodynamic limit. As predicted by the Landau theory of phase transition, the
order parameter shows nonuniversality at the tricritical point. Nevertheless, as a result of the separation of
the classical and the quantum degrees of freedom, we find a universal relation between the excitation gap
and the entanglement entropy for the entire critical line including the tricritical point. Here the universality
is carried by the emergent quantum modes, whereas the order parameter is determined classically.
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Introduction.—A tricritical point was first proposed by
Griffiths within the Landau theory of phase transition [1]. A
tricritical point is where ordinary critical manifolds intersect
[2]. In the physically accessible phase diagram, it can appear
as a point where a first-order phase transition boundary and a
second-order onemeet [1,2]. As for the critical behaviors, the
tricritical point normally belongs to a universality class
different from that of other points on the critical line [3,4].
Quantum phase transition [5] has been under intensive

study over many years, and is a central subject in the study of
numerous important solid state materials such as high
temperature superconductors and heavy fermions. Systems
that support a quantum tricritical point (QTP) are, however,
very rare. Recently it has been found that a QTP exists in
certain magnetic materials [6,7]. In the present work, we
construct a generalizedDickemodelwhich not only supports
aQTP, but that theQTP exhibits a special feature:Despite the
nonuniversal critical exponent that distinguishes the QTP
from other critical points, there exists a universal relation
between the excitation gap and the entanglement entropy of
the system, which applies to all the critical points of the
model. This universal relation characterizes the quantum
fluctuations and the emergent collective modes of themodel.
The Dicke model [8,9] describes an ensemble of two-

level systems interacting with a quantized bosonic mode.
Though originating as a model of atom-light interaction,
the Dicke model can be realized in various experimental
settings, including quantum gases [10–13], superconduct-
ing circuit [14–16], and solid state systems [17]. The Dicke
model features the famous superradiant phase transition
[18], where the bosonic mode becomes macroscopically
occupied if the atom-light interaction strength exceeds a
threshold value and the system enters the superradiant
phase. While the ground-state phase diagram can be
determined classically through a mean-field approach,
the superradiant phase transition is associated with a

divergent entanglement entropy [19,20], which suggests
nontrivial effects induced by quantum fluctuations. In the
generalized Dicke Hamiltonian we study in this work,
defined in Hamiltonian (1) below, an additional dimension
is present, such that the generalized model extends the
critical point in the Dicke model into a line and the second-
order superradiant phase transition can be tuned into a first-
order one across a QTP. As a consequence, we shall call the
model under study the quantum tricritical Dicke model. We
will explore the phase diagram and the critical behavior of
this model at zero temperature in the thermodynamic limit.
Model.—The quantum tricritical Dicke model is

obtained by partially breaking the exchange symmetry
between the two-level atoms in the Dicke Hamiltonian
HDicke through an additional term HSB

H ¼ HDicke þHSB; ð1Þ

HDicke ¼ ωb†bþ
XN
i¼1

�
δ

2
σðzÞi þ gðbþ b†Þ

2
ffiffiffiffi
N

p σðxÞi

�
; ð2Þ

HSB ¼ ε

2

XN
i¼1

ð−1ÞiσðxÞi : ð3Þ

Here the operator b represents the annihilation operator for
the bosonic light mode and σi’s are Pauli matrices describ-
ing the ith atom. ω, δ and g represent the light frequency,
the atom excitation energy, and the atom-light interaction
strength, respectively. Without loss of generality, all these
parameters are taken to be non-negative. In HDicke, all
atoms are identical. This symmetry is, however, broken by
HSB which separates the atoms into two groups: one group
experiences an effective Zeeman field along the x axis,
while the other group sees the Zeeman field in the opposite
direction. We choose the total number of atoms N to be
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even. As we will see, the second-order quantum phase
transition in the conventional Dicke model can be tuned
into a first-order one by increasing the strength ε of the
symmetry breaking term. In Fig. 1, we present a potential
experimental realization of our model, which involves
Raman transition [10] in two cavities linked by optical
fiber [21,22]. If N ¼ 1, our model reduces to the asym-
metric Rabi model [23], which has received much attention
recently, partially due to its relevance in circuit QED [24].
To proceed, we carry out a series expansion of the

Hamiltonian in terms of 1=N, so that a solvable low-energy
effective Hamiltonian can be obtained. To this end, we
introduce the shifted bosonic operator b1 ≡ b − ψ. Here ψ
is a c number, which can be regarded as arbitrary for now.
After rotating the Pauli matrices, we can recast the
Hamiltonian into the following form

H ¼ ω1b
†
1b1 þω1ψðb1 þ b†1Þ þω1ψ

2

þ
X
i;even

�
ω2

2
σðzÞi þ gðb1 þ b†1Þ

2
ffiffiffiffi
N

p ðsin θ2σðzÞi þ cos θ2σ
ðxÞ
i Þ

�

þ
X
i;odd

�
ω3

2
σðzÞi þ gðb1 þ b†1Þ

2
ffiffiffiffi
N

p ðsin θ3σðzÞi þ cos θ3σ
ðxÞ
i Þ

�
;

where

ω1 ≡ ω;

ω2;3 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ ð2gψ=

ffiffiffiffi
N

p
� εÞ2

q
;

θ2;3 ≡ tan−1½ð2gψ=
ffiffiffiffi
N

p
� εÞ=δ�:

We then define two collective atomic angular momentum
operators for the two groups of atoms:

Jðx;y;zÞ2 ≡ 1

2

X
i;even

σðx;y;zÞi ; Jðx;y;zÞ3 ≡ 1

2

X
i;odd

σðx;y;zÞi :

Without loss of generality, we restrict the Hilbert space to
the subspace with maximum J2 and J3. These operators can
be represented by two new bosonic operators b2, b3 by
means of the Holstein-Primakoff mapping [25]:

JðzÞi ¼ b†i bi−N=4; JðþÞ
i ¼ b†i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=2−b†i bi

q
; i¼ 2;3:

By expanding Jð�Þ
i in powers of 1=N, the following

effective Hamiltonian of H can be constructed:

Heff ¼ω1ðb†1b1þψ2Þ−Nðω2þω3Þ=4
þ½ω1ψ − g

ffiffiffiffi
N

p
ðsinθ2þ sinθ3Þ=4�ðb1þb†1Þ

þ
X
i¼2;3

�
ωib

†
i biþ

gcosθi
2

ffiffiffi
2

p ðbiþb†i Þðb1þb†1Þ
�
: ð4Þ

We label the set of states satisfying hb†i bii ¼ oðNÞ, i ¼ 2, 3
as V, and H −Heff ¼ oðHeffÞ holds only in V when
N → ∞. Heff is quadratic and solvable for arbitrary ψ.
However, if we want V to contain the low-energy states
of H and Heff , the second line in Eq. (4) is necessarily
small. This can be achieved by choosing ψ to coincide with
the expectation value hbi, which can be identified as
the order parameter in the mean-field theory, as we show
below.
The mean-field order parameter minimizes the dimen-

sionless mean-field energy-per-atom functional [26]:

fðzÞ ¼ z2=y−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2xzþ z2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2xzþ z2

p

2
; ð5Þ

where x≡ ε=ω0 and y≡ g2=ðωω0Þ are two dimensionless
system parameters with ω0 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 þ δ2

p
, and

z ¼ 2ghbi=ðω0

ffiffiffiffi
N

p
Þ ð6Þ

is the normalized order parameter. As a result, the coef-
ficient of the term linear in b1 and b†1 in Eq. (4) vanishes
since

ω1ψ − g
ffiffiffiffi
N

p ðsin θ2 þ sin θ3Þ=4 ¼ ffiffiffiffi
N

p
gf0ðzÞ=2 ¼ 0: ð7Þ

Consequently, the eigenstates of Heff satisfy hb1i ¼ 0,
which self-consistently yields ψ ¼ hbi.
Low-energy effective Hamiltonian and phase diagram.—

With ψ given by the mean-field theory, Heff becomes

FIG. 1. (a) A schematic representation of potential realization
of the tricritical Dicke model. We have two identical cavities
linked by an optical fiber and atoms are trapped within each
cavity. We assume that the fiber coupled cavity system contains
one normal mode that is near resonant with the atomic transition
and all other modes can be neglected. (b) An external light,
together with the dominant cavity mode, drives a Raman
transition between two low-energy states labeled as j0i and
j1i, which realizes the Dicke coupling as proposed in Ref. [10]. In
addition, a microwave field directly couples the two spin states.
The two microwaves for each cavity have a phase difference of π,
and serve as the effective Zeeman field in Eq. (3).
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Heff ¼ HC þHQ; ð8Þ

HC ¼ Nω0

2
fðzÞ; ð9Þ

HQ¼
X

i¼1;2;3

ωib
†
i biþ

X
i¼2;3

gcosθi
2

ffiffiffi
2

p ðb1þb†1Þðbiþb†i Þ: ð10Þ

If we regard z as a classical degree of freedom (d.o.f.) when
we search for the ground state of Heff in Eq. (8), then by
taking the thermodynamic limit, the classical d.o.f.
becomes fully separated from the quantum ones, in the
sense that HQ ¼ oðHCÞ when N → ∞. As a result, z is
fully determined by the classical partHC, independent from
the quantum part HQ. The separation of the two kinds of
d.o.f. contributes to the emergence of a new universality as
we will show when we discuss the critical behavior of
the model.
By minimizing HC, we obtain the order parameter z,

from which we can map out the phase diagram [27] in the
xy-parameter space as shown in Fig. 2. The normal and the
superradiant phases are characterized by z ¼ 0 and z > 0,
respectively. The entire phase boundary is split into a solid
line and a dashed line, which mark the 2nd- and the 1st-
order phase transition, respectively. These two lines join
together at the QTP marked as a red dot in the figure. The
position of the QTP is given by

ðxtc; ytcÞ ¼ ð1=
ffiffiffi
5

p
; 5=4Þ: ð11Þ

The presence of the QTP is one of the main results of
our work.
While HC determines the order parameter, HQ in

Eq. (10) gives the quantum fluctuation above the ground
state, from which we can find the excitation gap and the
ground state atom-light entanglement entropy. It is con-
venient to define the generalized position and momentum
operators as

Xi ¼
bi þ b†iffiffiffiffiffiffiffi

2ωi
p ; Pi ¼

ffiffiffiffiffi
ωi

2

r
bi − b†i

i
; i ¼ 1; 2; 3;

in terms of which, HQ takes the form of a Hamiltonian that
describes a three-dimensional harmonic oscillator:

HQ ¼ 1

2

X
ij

P2
i þ

1

2
ðΩ2ÞijXiXj−

ωi

2
;

Ω2≡
0
B@

ω2
1 λ12 λ13

λ12 ω2
2 0

λ13 0 ω2
3

1
CA; λij ≡

ffiffiffiffiffiffiffiffiffiffi
ωiωj

2

r
g cosθj: ð12Þ

Here X1 and P1 represent the original photonic d.o.f., while
X2;3 and P2;3 represent the atomic d.o.f.
From Hamiltonian (12), it follows that the lowest

excitation energy, i.e., the excitation gap, Δ is given by
the smallest eigenvalue of Ω, and the ground state wave
function ΨG is a Gaussian of the form

ΨGðXÞ ¼
�
detΩ
π3

�
1=4

exp

�
−
ΩijXiXj

2

�
; ð13Þ

from which we can calculate the reduced density matrix of
the light field by integrating out the atomic d.o.f.:

ρðX1;X0
1Þ¼Cexp

�
−
1

2
AþðX2

1þX02
1 ÞþA−X1X0

1

�
; ð14Þ

where A� ≡ 1
2
½Ω11 � ðdetΩ=Ω33Ω22 −Ω2

23Þ� and C is a
normalization factor. The von Neumann entropy, which
measures the entanglement between the light and atoms,
can be calculated as [19,28,29]

S≡ −Trðρ ln ρÞ ¼ γ

eγ − 1
− ln ð1 − e−γÞ; ð15Þ

where γ ≡ cosh−1 ðAþ=A−Þ. In the limit γ ≪ 1, we have
S ≈ 1 − ln γ. We calculate Δ and S numerically and display
the results in Fig. 3. These two quantities, unlike the order
parameter or HC, which only depends on x and y, also
depend on λ≡ ω=ω0 like HQ. Therefore the full diagram
should be three dimensional. In Fig. 3, we plot Δ and S on
the ðx; yÞ plane for λ ¼ 0.1, 1, 10. Although it is difficult to

FIG. 2. The phase diagram of the tricritical Dicke model. The
order parameter z vanishes in the normal phase and is finite in the
superradiant phase. The quantum tricritical point is marked by a
red dot, which is located at the intersection of the second-order
phase transition boundary (red solid line) and the first-order phase
transition boundary (green dashed line).
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distinguish the two phases (normal and superradiant)
through Δ and S, the phase boundary is quite clear in
the plots. On the 2nd-order phase transition boundary, the
gap closes and the critical entanglement entropy diverges
logarithmically. By contrast, on the 1st-order phase tran-
sition boundary, both Δ and S have finite jumps across the
phase boundary.
Critical behavior.—Let us now turn to the critical

behavior of the tricritical Dicke model. One is often
concerned with how the order parameter behaves near
the critical line (i.e., the 2nd-order phase boundary).
Consider a point ðx; yÞ in the superradiance region and
close to the critical line, if we draw a line perpendicular to
the critical line through this point which intercepts the
critical line at ðxc; ycÞ, then the order parameter at ðx; yÞ can
be obtained by expanding fðzÞ in powers of z

z2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y−2c þ 4x2cy2c

p
1 − 5x2c

nþ oðnÞ; ð16Þ

where n is the distance between ðx; yÞ and the critical line.
Hence, the critical exponent α defined by z ∝ nα is 1=2.

However, if the line through ðx; yÞ intercepts the critical
line at the QTP ðxtc; ytcÞ, we have a different scaling:

z4 ¼ 5
ffiffiffiffiffi
21

p

6
nþ oðnÞ; ð17Þ

which yields an exponent α ¼ 1=4 for the QTP. In this
sense, the QTP does not belong to the same universality
class of the other critical points in this model, consistent
with the general Landau theory of phase transition.
The critical behavior of the order parameter as described

above is determined by HC. Now let us examine the
behavior of the excitation gap Δ and the entanglement
S, both of which are governed by HQ. To this end, we need
to find the matrix elements of Ω. It can be shown that, on
the critical line, Ω has eigenvalues 0, ω0, and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2

p
ω0.

The smallest eigenvalue is 0, which indicates that the gapΔ
vanishes, as expected. Furthermore, the entropy S diverges
logarithmically according to Eq. (15). Near the critical line,
to the leading order in det ðΩ=ω0Þ, we have

Δ=ω0 ∼ ð1þ λ2Þ−1=2 det ðΩ=ω0Þ; ð18Þ

S ∼ 1 −
1

2
ln

�
4ðλ2 þ 1Þ det ðΩ=ω0Þ

λ2

�
; ð19Þ

which establishes a universal relation between S and Δ in
the critical region as

S ∼ 1 −
1

2
ln

�
4ðλ2 þ 1Þ3=2Δ

λω0

�
: ð20Þ

Equation (20) represents another key result of this work.
Two important remarks are in order here. First, Eq. (20)
does not explicitly contain z, which is due to the separation
of the classical and the quantum d.o.f. aforementioned. The
harmonic oscillator modes, depicted by HQ, are collective
modes involving both light and atoms, emerging above the
mean-field ground state of HC in the thermodynamic limit,
and Eq. (20) is solely determined by these modes; therefore
we can call Eq. (20) an emergent quantum universality.
Second, Eq. (20) is valid near all the critical points despite
the fact that points around the QTP exhibit different scaling
behavior for the order parameter. It is even valid in the
normal phase region below the critical line where the order
parameter vanishes.
Given a point ðx; yÞ sufficiently close to, and a distance n

away from, the critical line, the key factor det ðΩ=ω0Þ in
Eq. (19) can be expressed by n as

det ðΩ2=ω2
0Þ=λ2 ¼ β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y−2c þ 4x2cy2c

q
nþ oðnÞ; ð21Þ

where the coefficient β takes different values in different
critical regions. If ðx; yÞ is located in the superradiant phase,
then β ¼ 2 unless ðx; yÞ approaches the QTP, in which case
β ¼ 4. If ðx; yÞ is located in the normal phase where z ¼ 0,

FIG. 3. The atom-light entanglement entropy S (left panel) and
the lowest excitation energy Δ (right panel) as functions of x and
y for λ≡ ω=ω0 ¼ 0.1, 1, 10 (from top to bottom). The QTP is
marked by the red dot as in Fig. 2.

PHYSICAL REVIEW LETTERS 122, 193201 (2019)

193201-4



thenβ ¼ 1. The scaling exponent between det ðΩ=ω0Þ andn,
is always the same while the scaling amplitude varies.
Consequently, we have Δ ∝ n1=2 and the entropy diverges
logarithmically in terms of n. Another point to remark is that,
as a function of λ, the critical entanglement entropy takes the
form SðλÞ ≈ − 1

2
ln ðλþ λ−1Þ þ const, which indicates that

the entanglement between light and atom ismaximized under
the resonance condition λ ¼ 1.
In our model, as in the conventional Dicke model, the

strengths of the rotating and the counterrotating terms are
equal. Previous studies have considered a Dicke-type
model where these two strengths can have different values
and found that there exists a multicritical point in the
ground state phase diagram [30]. However, in the presence
of dissipation, the multicritical point disappears [31]. This
is related to the disappearance of the superradiance phase in
the presence of dissipation when the counterrotating terms
are absent. Because of the presence of the counterrotating
terms, we expect that the QTP in our model should be
robust against dissipation. Nevertheless, how the dissipa-
tion affects the universal scaling requires further study.
Conclusion.—In conclusion, we have constructed a

generalized Dicke model that supports a QTP. The phase
boundary and the position of the QTP in the parameter
space, as well as the scaling behavior of the order
parameter, can be determined from the mean-field theory
and are found analytically. From this, we explicitly show
that the QTP belongs to a different universality class than
other points on the critical line. We further investigated the
quantum fluctuations above the mean-field ground state,
and calculated the excitation gap and the entanglement
entropy and their critical behavior near the critical line. We
established a new universal relation between the excitation
gap and the entanglement entropy in the entire critical
regime that includes the QTP. The universality is the result
of the separation of the quantum and the classical d.o.f. in
the thermodynamic limit, being the property of the emer-
gent collective quantum modes. Our model could be
realized using atoms and cavities, or maybe other plat-
forms, with current technology. Our work opens up new
opportunities to investigate quantum tricriticality.
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