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We prove a trade-off relation between the entanglement cost and classical communication round
complexity of a protocol in implementing a class of two-qubit unitary gates by two distant parties, a key
subroutine in distributed quantum information processing. The task is analyzed in an information theoretic
scenario of asymptotically many input pairs with a small error that is required to vanish sufficiently quickly.
The trade-off relation is shown by (i) one ebit of entanglement per pair is necessary for implementing the
unitary by any two-round protocol, and (ii) the entanglement cost by a three-round protocol is strictly smaller
thanoneebit per pair.Wealsoprovideanexampleofbipartite unitarygates forwhich there is no such trade-off.
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Introduction.—Quantum information processing
achieves its power by composingmultiple quantum systems
to form a larger quantum system. It is necessary that the
components collaborate to behave as a single composite
quantum system. In distributed quantum information
processing (DQIP), communication channels connecting
the components, quantum and/or classical, serve as a
resource. Additional correlation shared between the com-
ponents is another type of resource in DQIP. Shared
correlations can be both quantum and classical. The process-
ing power of the individual components and the available
communication or correlation resources determine the total
information processing capacity of a DQIP system.
Shared entanglement in DQIP is arguably the most

resourceful kind of quantum correlation. DQIP protocols
exhibit advantages over their classical counterparts by
exploiting entanglement, e.g., in communication complex-
ity [1–16], interactive proof systems [17–20], nonlocal
games [21–31], measurement-based quantum computation
[32–34], and quantum cryptography [35]. Entanglement is
distinguished from classical nonlocal DQIP resources such
as classical correlation and classical communication in that
entanglement can never be generated or increased by the
classical resources, however much consumed. In fact, the
modern entanglement theory [36,37] defines entanglement
as the correlation of quantum states that cannot be
strengthened under local operations and classical commu-
nication (LOCC), where all the intercomponent commu-
nications within the DQIP system are restricted to classical.
General LOCC protocols consist of multiple rounds (see

Fig. 1). Consider an LOCC task performed by two distant

parties, say, Alice and Bob. A round in any protocol for this
task consists of one party performing a local operation and
communicating a classical message to the other. Protocols
with a higher number of rounds are higher in round complex-
ity. Every communication must wait a certain minimum
amount of time to complete; hence the round complexity of a
protocol draws a lower bound on the time required.
The round complexity is a separate resource from the

total length of exchanged messages, and the “bandwidth,”
i.e., the maximum possible length of each message.
Entanglement cannot be increased by any LOCC protocol
however high in round complexity and long in classical
message. The local processing power affects only the set of
possible local operations. The resources for DQIP have
been extensively investigated [38–58], but known relations
between entanglement resource and the round complexity
are scarce [57,58].
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FIG. 1. Schematic description of round complexity. For each of
(a)–(d), the horizontal axis represents a configuration of Alice
(left) and Bob (right), and the vertical axis for round. Circles and
arrows represent local operations and classical communications,
respectively. The number of rounds is 1 for (a), 2 for (b), 3 for (c),
and 1 for (d). (a) is a protocol with unidirectional communication,
while the others are with a bidirectional one. (d) is a protocol with
simultaneous message exchange, while the others are not.
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In this Letter, we report a DQIP task for which the cost of
shared entanglement can be reduced by increasing the CC
round complexity of protocols. Thus, we jointly analyze
entanglement and causal relations, each a fundamental
topic of physics, in general, in this single context of
quantum information processing. The task is for the two
distant parties to implement a class of two-qubit unitary
gates by LOCC assisted by shared entanglement (see
Fig. 2). The two parties are not allowed to exchange
messages simultaneously. We leave the length of each
message and the total unrestricted, so that the only source
of any reduction in the entanglement cost is in the higher
round complexity. We prove that a three-round protocol
outperforms all two-round protocols in reducing the entan-
glement cost. Thereby, we show a clear trade-off relation
between the cost of entanglement and complexity in causal
order. We also provide a class of bipartite unitary gates for
which there is no such trade-off, by proving that a protocol
of type (b) and (d) in Fig. 1 achieves the minimum cost of
entanglement over all finite-round protocols.
Our result is a more “refined” trade-off between round

complexity and other resources in LOCC protocols com-
pared to the previous approaches [38–44] showing the
advantages of bidirectional communication over a unidi-
rectional one. Other known results [45–58] analyze zero
error-tolerance regimes, while we adopt an information
theoretic scenario of infinitely many inputs and a vanish-
ingly small error [59]. The more refined analysis is made
possible partly due to the mathematically well-structured
tools developed in the quantum Shannon theory [60–62]
(see [59] for the details). Outside LOCC, higher-round
complexity is known to result in an exponential decrease in
computational resources [63].
Setup of our protocol.—Suppose that Alice and Bob,

located in two distant laboratories, have n-qubit systems
An ¼ A1…An and Bn ¼ B1…Bn, respectively. They aim
to apply a two-qubit unitary gate U on each pair
AiBiði ¼ 1;…; nÞ, simultaneously. To accomplish this

task, Alice and Bob may perform quantum operations
locally in their laboratories, communicate classical mes-
sages to each other, and may use copies of a Bell pair
jΦ2i ≔ ðj00i þ j11iÞ= ffiffiffi

2
p

shared in advance as a resource.
They are, however, not allowed to communicate quantum
messages or to perform operations that globally act across
their laboratories. That is, they accomplish the task by
LOCC assisted by entanglement. We assume that they are
not allowed to communicate classical messages simulta-
neously in both directions. The state on system AnBn may
initially be correlated with an external reference system R,
which is inaccessible to Alice and Bob.
Let E > 0 be the number of copies of Bell pairs divided

by n. Denoting by a and b the quantum registers in which
the resource state jΦ2i is stored, an LOCC protocol for the
above task is represented by a completely positive and
trace-preserving (CPTP) map Mn from AnBnanEbnE to
AnBn. The error of the protocol for a particular initial
state jψiAnBnR is quantified by the fidelity between the
target state U⊗njψiAnBnR and the state obtained after the
protocol, i.e.,

ϵðMn;ψÞ ≔ 1 − F(U⊗nðψÞU†⊗n;Mnðψ ⊗ Φ⊗nE
2 Þ):

ð1Þ

We adopted the notation ψ ¼ jψihψ j and Φ2 ¼ jΦ2ihΦ2j.
The fidelity is defined by Fðρ; σÞ ≔ ðTr½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ
p

σ
ffiffiffi
ρ

pp �Þ2. The
supremum of the above quantity over all ψ is called the
worst-case error and is denoted by ϵ�ðMnÞ.
An entanglement consumption rate E is said to be

achievable by r-round protocols if there exists a sequence
fMng∞n¼1 of r-round protocols such that the worst-case
error ϵ�ðMnÞ vanishes in the limit of n to infinity. For a
technical reason, we impose that the convergence of the
error is sufficiently fast so that

lim
n→∞

n4ϵ�ðMnÞ ¼ 0: ð2Þ

The entanglement cost of a two-qubit unitary gate U by
r-round protocols is the minimum rate E that is achievable
by r-round protocols and is denoted by ErðUÞ.
In this Letter, we prove that there exists a trade-off

relation between the entanglement cost and round complex-
ity for implementing a two-qubit unitary gate. By “trade-off
relation,” we refer to the fact that the entanglement cost of a
unitary gate by the best possible r-round protocol is strictly
smaller than any r0-round one, i.e., ErðUÞ < Er0 ðUÞ, for
certain r > r0.
We consider a class of two-qubit unitary gates of the

form

UAB
θ ¼ cos

�
θ

2

�

IA ⊗ IB þ i sin

�
θ

2

�

σAz ⊗ σBz ; ð3Þ

where θ ∈ ð0; π=2� and I and σz are the identity operator
and the Pauli-z operator defined by I ¼ j0ih0j þ j1ih1j and

classical
communication

local
operations

local
operations

Alice Bob

shared
entanglement

FIG. 2. Implementation of a bipartite unitary gate by LOCC
assisted by shared entanglement is depicted. The balls represent
physical systems on which the unitary gate is to be implemented,
and the diamonds represent parts of the entanglement resource
shared in advance.
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σz ¼ j0ih0j − j1ih1j, respectively. We prove that the trade-
off relation holds for θ smaller than a constant, by showing
that E2ðUθÞ > E3ðUθÞ. In the following, we describe an
outline of the proof of E2ðUθÞ ≥ 1 based on our previous
work [59] and that of a proof of E3ðUθÞ < 1. A detailed
proof of E3ðUθÞ < 1 is provided in Ref. [64].
Conditions for successful protocols.—For a protocolMn

to be successful, the following conditions must be satisfied.
We first analyze a general case where A and B are quantum
systems with an arbitrary (but finite) dimension d. We
consider a particular initial state jΨU†;ni ≔ jΨU†i⊗n, where
jΨU†i is the Choi-Jamiołkowski state corresponding to the
inverse of the unitary gate to be implemented. With RA and
RB denoting d-dimensional reference systems that are
inaccessible to Alice and Bob, the Choi-Jamiołkowski
state is defined as

jΨU†i ≔ U†ABjΦdiARA jΦdiBRB; ð4Þ
where Φd is the maximally entangled state with Schmidt
rank d. The worst-case error ϵ�ðMnÞ is no smaller than
ϵðMn;ΨU†;nÞ. Thus, a successful protocolMn must satisfy
ϵðMn;ΨU†;nÞ ≈ 0. Noting that UU† ¼ I, it follows that

MnðΨAnBnRn
AR

n
B

U†;n
⊗ Φ⊗nE

2 Þ ≈ ðjΦdiARA jΦdiBRBÞ⊗n: ð5Þ

This condition imposes a restriction on Alice’s measure-
ment at the beginning of the protocol. The entanglement
consumption rate E in a two-round protocol must be large
enough in order that such a measurement by Alice exists for
sufficiently large n.
Observe that the initial state in the lhs in Eq. (5) is an

entangled state between AnRn
Aa

nE=BnRn
Bb

nE, while the
state in the rhs is a product state in that separation. In
addition, both states are pure maximally entangled
states between AnBn=Rn

AR
n
B. Thus, Mn can be viewed

as a protocol that destroys correlation between

AnRn
Aa

nE=BnRn
Bb

nE in the state ΨAnBnRn
AR

n
B

U†;n
⊗ Φ⊗nE

2 while
maintaining the purity of the whole state as well as the
maximal entanglement between AnBn=Rn

AR
n
B (Fig. 3). It

should be noted that RA and RB are reference systems that
are inaccessible to Alice and Bob. Thus, the task considered

here is different from the transformation of bipartite pure
states [68].
Let us analyze conditions imposed by Eq. (5) on Alice’s

measurement at the beginning of a two-round protocolMn.
We denote the output system of the measurement by A0.
First, since entanglement between AnBnanEbnE=Rn

AR
n
B is

nonincreasing under any step in Mn, the reduced state on
Rn
AR

n
B must be close to the maximally mixed state for each

measurement outcome. We call this condition oblivious-
ness, because it is equivalent to the condition that the
measurement does not extract any information about the
initial state. Second, since the reduced state on BnRn

B is not
changed by Alice’s operation at the end, the maximally
entangled state ðΦBRB

2 Þ⊗n must be obtained immediately
after Bob’s measurement. This implies that A0Rn

A and Rn
B

must be in a product state on average, after the measure-
ment by Alice. We refer to this condition as decoupling.
From decoupling to Markovianization.—Let Ψk be the

state after Alice’s measurement corresponding to the out-
come k. The decoupling condition is represented by the
quantum mutual information as IðA0Rn

A∶Rn
BÞΨk

≈ 0 for each
k in a highly probable set, where IðP∶QÞρ ≔ SðρPÞ þ
SðρQÞ − SðρPQÞ and S is the von Neumann entropy
SðρÞ ¼ −Tr½ρ log ρ�. Since jΦdiARA jΦdiBRB is the maxi-
mally entangled state between AB=RARB, there exists a
unitary Û on RARB satisfying ÛRARB jΦdiARA jΦdiBRB ¼
UABjΦdiARA jΦdiBRB . It follows that the conditional quan-
tum mutual information is equal to zero, i.e.,
IðA0∶BnjRn

AR
n
BÞΨk

¼ 0, where IðP∶QjRÞσ ≔ SðσPRÞþ
SðσQRÞ − SðσRÞ − SðσPQRÞ. The chain rule of the quantum
mutual information yields IðA0Rn

A∶Rn
BÞ ≥ IðA0∶BnRn

BjRn
AÞ.

Consequently, we arrive at

IðA0∶BnRn
BjRn

AÞΨk
≈ 0; ð6Þ

since the conditional quantum mutual information is
always non-negative [69].
A tripartite quantum state for which the conditional

quantum mutual information is approximately equal to
zero, like Eq. (6), is called an approximate quantum
Markov chain (AQMC) [70]. From condition (6), it follows
that Alice’s measurement needs to transform the state
jΨU†;ni to an AQMC with the assistance of jΦ2i⊗nE while
respecting the obliviousness condition. The entanglement
consumption rate E must be large enough in order that a
measurement by Alice satisfying this condition exists.
Markovianizing cost.—We have proved in Ref. [59] (see

Theorem 5 therein) that the entanglement consumption rate
Emust be no smaller than the Markovianizing cost of jΨU†i
in order that there exists a measurement satisfying the
condition mentioned above. In general, the Markovianizing
cost of a tripartite quantum state ρABC is defined as the
minimum cost of randomness required for transforming
copies of the state to an approximate Markov chain, by a
random unitary operation on system A. In the case of pure

FIG. 3. A graphical representation of a task corresponding to
Eq. (5). The task is to destroy the correlation between AnRn

A and
BnRn

B while preserving the maximal entanglement between AnBn

and Rn
AR

n
B as well as the purity of the whole state.
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states, a single-letter formula for the Markovianizing cost is
obtained in terms of the Koashi-Imoto decomposition [71],
which is used to characterize the structure of quantum
Markov chains [72]. In the current context, the relevant
Markovianizing cost is that of a “tripartite” pure state
jΨU†i, with systems B and RB treated as a single sys-
tem BRB.
Outline of proof of E2ðUθÞ ≥ 1.—As proved in

Refs. [59,73], the Markovianizing cost of ΨU† is
equal to the von Neumann entropy of a state
ΦARA

U;∞ ≔ limN→∞N−1 PN
n¼1 E

n
UðjΦdihΦdjARAÞ, where EU

is a CPTP map on system A defined by EUðτÞ ¼
TrBRB

½UABðTrB½U†ABðτA ⊗ IBÞUAB� ⊗ ΦBRB
d ÞU†AB�. For

Uθ defined by (3), we have EUθ
ðτÞ ¼ 1

2
½ð1þ cos2 θÞ · τ þ

sin2 θ · σzτσz� and ΦARA
Uθ ;∞ ¼ 1

2
ðj0ih0j ⊗ j0ih0j þ j1ih1j ⊗

j1ih1jÞ. Hence, the Markovianizing cost of ΨU†
θ
is equal

to 1, which completes the proof of E2ðUθÞ ≥ 1.
Outline of proof of E3ðUθÞ < 1.—To prove E3ðUθÞ < 1,

we first analyze a single-shot protocol proposed in Ref. [49]
for implementing Uθ. We will later extend this protocol to
the one for implementing U⊗n

θ and analyze the total error
and the entanglement cost by applying the law of large
numbers.
The single-shot protocol consists of a concatenation of

two two-round protocols and proceeds as follows: (P1)
Alice and Bob implement Uθ by a protocol of type (b) in
Fig. 1, using a two-qubit state jϕθiab as a shared resource.
The protocol succeeds in implementing Uθ with a certain
probability pθ. If it fails, another unitary gate Uθ0 is
implemented, in which case Alice and Bob continue to
the next step. (P2) Alice and Bob implement Uθ−θ0 by a
deterministic protocol proposed in Ref. [45], which con-
sumes one Bell pair. The protocol is of type (b), except that
the roles of Alice and Bob are exchanged. Noting that
Uθ−θ0Uθ0 ¼ Uθ, they succeed in implementing Uθ in total,
regardless of the success in (P1). The average entanglement
cost of this protocol, measured by the entanglement
entropy, is equal to Ēθ ¼ 1 − pθ þ EðϕθÞ, where EðϕθÞ ≔
Sðϕa

θÞ and ϕa
θ ≔ Trb½jϕθihϕθjab�. As we prove in Ref. [64],

it holds that Ēθ < 1 for θ below a strictly positive constant.
Consider the following protocol for implementing U⊗n

θ :
(P0) Alice and Bob obtains n copies of jϕθiab from
approximately nEðϕθÞ copies of Bell pairs, by an entan-
glement dilution protocol [65] of type (a) in Fig. 1. (P10)
They apply (P1) independently on each of n input pairs.
Because of the law of large numbers,Uθ is implemented on
approximately npθ pairs of the input. (P20) They apply (P2)
to implement Uθ−θ0 on the remaining input pairs, which
costs approximately nð1 − pθÞ Bell pairs. In total, the
protocol succeeds in implementing U⊗n

θ with a high
probability by using approximately nĒθ copies of Bell
pairs. As depicted in Fig. 4, the three subprotocols are
brought together to form a three-round protocol. Thus, it
follows that E3ðUθÞ ≤ Ēθ.

Unitaries with no trade-off.—So far, we have investigated
the case in which there is a difference between E2ðUÞ and
E3ðUÞ. Next, we provide an example of bipartite unitary
gates for which there exists no trade-off relation between the
entanglement cost and round complexity. Let fjtigdt¼1 be a
fixed basis of a d-dimensional Hilbert space H. The
generalized Pauli operators σpqðp; q ∈ f1;…; dgÞ on H
is defined by σpq ≔

P
d
t¼1 e

2πiqt=djt − pihtj, where subtrac-
tion is taken with mod d. Let A and B be d-dimensional
systems. A bipartite unitary gate Uc acting on AB is called a
generalized Clifford operator if, for any p, q, r, and s, there
exist p0, q0, r0, s0, and a phase θpqrs ∈ R such that

Ucðσpq ⊗ σrsÞU†
c ¼ eiθpqrsσp0q0 ⊗ σr0s0 : ð7Þ

We have proved in Ref. [59] (see Theorem 27 therein)
that E2ðUcÞ ¼ infr≥1ErðUcÞ holds. In the following, we
prove that the same entanglement cost is achievable by a
one-round protocol of type (d) in Fig. 1. This implies that
there exists no trade-off relation between the entanglement
cost and round complexity for generalized Clifford oper-
ators, regardless of whether the two parties are allowed to
exchange messages simultaneously.
Consider the following single-shot protocol (see Fig. 1 in

Ref. [64]): (i) Alice and Bob initially share a resource state
jΨUc

iÃ B̃ ab ≔ ðUÃ B̃
c ⊗ IabÞjΦdiÃajΦdiB̃b, with a and b

being d-dimensional quantum systems; (ii) they perform
a projective measurement on system Aa and Bb with
respect to bases fσ†ApqjΦdiAagpq and fσ†Brs jΦdiBbgrs, respec-
tively; (iii) they communicate the measurement outcomes
pq and rs to each other; (iv) they perform σp0q0 on Ã and
σr0s0 on B̃, respectively, determined by Eq. (7). This
protocol is a one-round protocol of type (d) in Fig. 1. A
simple calculation yields that Uc is implemented on the
initial state by this protocol.
Let KðUcÞ be the entanglement entropy of jΨUc

iÃ B̃ ab,

i.e., KðUcÞ ≔ SðΨÃa
Uc
Þ. Consider the following n-shot pro-

tocol, by which the entanglement cost KðUcÞ is achievable:
(i) Alice and Bob initially share approximately nKðUcÞ
copies of Bell pairs, which is transformed to n copies of
jΨUc

iÃ B̃ ab in one round by entanglement dilution; (ii) they
perform the single-shot protocol presented above on each

FIG. 4. Transformations of protocols in terms of communica-
tion rounds. The figure represents how three protocols are
combined to form a three-round protocol.
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pair. The only source of error of this protocol is in the
entanglement dilution, which vanishes exponentially in the
limit of n to infinity. The entanglement dilution and
the single-shot protocol can be jointly performed as a
single one-round protocol.
Beigi and König [74] proved that any bipartite unitary

gate can be implemented with arbitrary high precision by a
one-round protocol of type (d) in Fig. 1. The protocol
proposed therein is universal in the sense that it is
applicable to any type of unitary gates. The entanglement
cost of the protocol, however, diverges if the total error is
required to be vanishingly small. This is in contrast to the
protocol presented above, which is specific to the gener-
alized Clifford gates. Gonzales and Chitambar [75] propose
a protocol for two-qubit unitary gates that achieves an
exponential improvement in the entanglement cost com-
pared to that of Ref. [74]. An exact protocol for a class of
two-qubit unitary gates is also reported in Ref. [75], which
requires two Bell pairs as a resource.
Conclusion.—We considered the implementation of a

bipartite unitary gate by LOCC, assisted by shared entan-
glement. We proved that a three-round protocol outper-
forms all two-round LOCC protocols in reducing the
entanglement cost for a class of two-qubit unitary gates.
Thereby, we provided a first example of a distributed
information processing task with nonzero error tolerance
for which there exists a clear trade-off relation between the
costs of shared entanglement and the round complexity of a
protocol. It should be noted that the same trade-off relation
holds even if the additional resource of entanglement is
available as a catalyst [59]. We also provided an example of
unitary gates for which there is no such trade-off. It remains
open whether E2ðUθÞ ≥ 1 holds when we adopt the
condition limn→∞ϵ

�ðMnÞ ¼ 0 instead of condition (2),
which is required for applying Theorem 15 in Ref. [76]
(see Sec. IX in Ref. [59] for details).
The task represented by Eq. (5) can be regarded as a

generalization of quantum state merging [60,77] to a
bidirectional communication task (see also [78]). Our result
shows that, for this task, protocols with the minimum
required communication rounds (i.e., two rounds) cannot
necessarily achieve the minimum entanglement cost
because of its causal structural complexity. This is in
contrast to quantum state merging, in which the optimal
entanglement cost is asymptotically achievable by one-way
communication.
It was proved in Ref. [57] that a protocol with higher

round complexity is more efficient in extracting entangle-
ment from a tripartite quantum state. To compare their
result with the trade-off relation presented in this Letter is
left as a future work.
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