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To describe certain facets of nonclassicality, it is necessary to quantify properties of operations instead of
states. This is the case if one wants to quantify how well an operation detects nonclassicality, which is a
necessary prerequisite for its use in quantum technologies. To do so rigorously, we build resource theories
on the level of operations, exploiting the concept of resource destroying maps. We discuss the two basic
ingredients of these resource theories, the free operations and the free superoperations, which are sequential
and parallel concatenations with free operations. This leads to defining properties of functionals that are
well suited to quantify the resources of operations. We introduce these concepts at the example of
coherence. In particular, we present two measures quantifying the ability of an operation to detect, i.e., to
use, coherence, one of them with an operational interpretation, and provide methods to evaluate them.
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Introduction.—In recent years, there has been an increas-
ing interest in quantum technologies. To investigate
rigorously which properties of quantum mechanics are
responsible for potential operational advantages, quantum
resource theories were developed, see e.g., Refs. [1–10].
These resource theories originate from constraints that are
imposed in addition to the laws of quantum mechanics,
motivated either by physical or by practical considerations.
From the constraints follow the free states and the free
operations, which are the ones that can be prepared and
executed without violation of the constraints. These two
main ingredients allow for the formulation of a rigorous
theoretical framework in which to analyze quantitatively
the amount of the resource present in quantum states and its
usefulness in operational tasks [11–13]. In addition, there
exist quantum operations that can be considered resources
as well, because they are not free. Therefore, a comple-
mentary question to ask is how valuable these operations
are [14]. This question is often approached by the evalu-
ation of quantities such as the resource generation capacity,
i.e., the maximal increase of the resource in an input state
under application of the operation, or the resource cost, i.e.,
the minimal amount of resources needed to simulate a
nonfree operation by means of free operations [15–22]. As
we will discuss later and in the Supplemental Material [23],
these methods cannot be used to quantify all relevant
properties of quantum operations. Hence the situation
merits a broader approach and this is why we are examining
a broader framework. More concretely, we will build
formal resource theories on the level of operations,
allowing us to quantify the value of operations directly.

This is also interesting from a conceptual point of view: the
goal of quantum technologies is to perform tasks that
are impossible using classical technologies. This includes
sensing at high precision [35], efficient processing of
information, and securing the transmission of data [36].
Ultimately, this is all achieved by quantum operations, i.e.,
dynamical resources. Hence it seems natural to quantify the
value of operations directly without the detour through
states as the latter are static resources that have to be
transformed into dynamic resources using free operations.
Since quantum states can be seen as quantum operations
with no input and a constant output (describing a quantum
mechanical preparation apparatus), a resource theory on the
level of operations can quantify the value of states, too,
leading to a unified resource theoretic treatment of states
and operations. Therefore we expect that resource theories
on the level of operations will be a key method to the
systematic exploration of quantum advantages. In this
Letter, we will exemplify the concepts and advantages of
resource theories of operations at the example of coherence.
A fundamental ingredient to the departure of quantum

mechanics from classical physics is the omnipresence of
the superposition principle [37,38]. This has led to the
development of rigorous resource theories of coherence
[3,9,13,39], which allow us to investigate the role of
coherence in quantum technological applications [40–42].
These theories are formulated on the level of states and
mainly focused on the inability to create coherence. How-
ever, this is only half of the picture: to exploit coherences or
more generally quantum superpositions [38,43] in technol-
ogies, it is both necessary to have access to operations
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that can create coherence and operations that can detect
it in the sense that its presence makes a difference in the
measurement statistics [44,45]. If we cannot detect or equi-
valently use coherence or, more generally, nonclassicality,
there cannot be an operational advantage in its presence.
This is also reflected in ongoing efforts to describe detectors
for nonclassicality [46–50]. As discussed in Refs. [44,51]
and the Supplemental Material [23], this is particularly clear
in interferometric experiments. Therefore an answer to the
question “How well can a quantum operation detect coher-
ence?” is needed to understand quantum advantages. To the
best of our knowledge, and as we will discuss now, this
question cannot be addressed using a resource theory on the
level of states.
Although there exist mathematical frameworks for

coherence theories on the level of states in which the free
operations cannot make use of coherence [39,44,52–56],
this is problematic from a conceptual point of view: ideally,
the presence of resources in states should be detectable by
free operations, because this is a necessary prerequisite that
such states can allow for operational advantages over free
operations alone. If this is not possible, then it is misleading
to consider a state to be resourceful (see also Ref. [57]), as
is the situation in the theories cited above. This also implies
that it is not possible to address the coherence detection
capabilities of operations in these frameworks via the
resource cost of states. In frameworks where coherence
is useful, its detection is, as mentioned above, necessarily
free, leading to a zero resource cost, which therefore cannot
be used to address the coherence detection capabilities of
operations either. On the other hand, as we are interested in
the question of how well an operation can detect coherence,
its coherence generation capacity cannot be the figure of
merit, and therefore we cannot address the coherence
detection capabilities of an operation based on a resource
theory on the level of states. We refer to the Supplemental
Material [23] for more details and proofs of these obser-
vations, including a discussion why we cannot use the
coherence of the corresponding Choi state [58] to quantify
the coherence of operations and why this should not be
expected.
In contrast, in this Letter, we will show that the

coherence detection capability of operations can be quan-
tified rigorously and that the conceptual problem discussed
above vanishes if we use a resource theory on the level of
operations. We will first introduce the two basic ingredients
to such a theory: the free operations and the free super-
operations, which map operations to operations and consist
naturally of sequential and parallel concatenations with free
operations [59–61]. From these ingredients we deduce
defining properties of functionals which are well suited
to quantify the value of operations. Then we present two
such functionals quantifying how well an operation can
detect coherence: one based on the diamond norm that can
be calculated efficiently, and another one based on the

induced trace norm, which has a clear operational inter-
pretation. We give examples for the value of operations
according to these measures and conclude with an outlook
on open questions.
The framework we introduce can be extended easily to

operations that cannot create coherence and operations that
can neither detect nor create it. We comment on results in
this direction in the Supplemental Material. In a forth-
coming work, our theoretical results will be used in the
analysis of an experiment based on a photodetector with a
tunable degree of coherence detection capability [62]. All
proofs can be found in the Supplemental Material [23].
Basic framework.—Since coherence is a basis dependent

concept, we fix for all systems A an orthonormal basis jiAi
which we call incoherent. This basis is singled out by the
physics of an actual system or the computational basis in
a quantum algorithm. From now on, coherences and
populations will be seen with respect to the incoherent
basis. The incoherent basis of a system composed of two
subsystems A and B is given by the product basis of their
incoherent bases. If it is clear from the context, we will
omit the labels indicating the systems from here on. All
states ρ that are a statistical mixture of the incoherent basis
states, i.e.,

ρ ¼
X
i

pijiihij; ð1Þ

are called incoherent. In the following, we make frequent
use of the total dephasing operation Δ

ΔðρÞ ¼
X
i

jiihijρjiihij; ð2Þ

which is a resource destroying map [63] in coherence
theory; i.e., its output is always incoherent. The total
dephasing operation on a composed system is the tensor
product of the total dephasing operations on the subsys-
tems. If we concatenate operations, we will always implic-
itly assume that they match; i.e., the output dimension of
the first operation equals the input dimension of the second
operation. In addition, we will not write the concatenation
operator ∘ if not necessary.
To construct a resource theory that allows us to answer

the question how well a quantum operation can detect
coherences, we need to define the free operations and
superoperations. Let us begin with the free operations.
First we notice that a positive operator-valued measure
(POVM) cannot detect coherences if the measurement
statistics are independent of them. This leads us to the
following definition:
Definition 1.—A POVM given by fPng∶Pn ≥ 0,P
nPn ¼ 1 is free if and only if

trPnΔρ ¼ trPnρ ∀ ρ; n: ð3Þ
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As one expects, all free POVMs are of the follow-
ing form:
Proposition 2.—A POVM is free if and only if

Pn ¼
X
i

Pn
i jiihij ∀ n: ð4Þ

Next we define general free operations, where we need to
address subselection (by measurement results) in a con-
sistent manner. Since the ability to do subselection depends
on the actual experimental implementation, we adopt the
point of view that this is a resource in itself. In general, we
can have a quantum instrument I , which allows us to do
subselection according to a variable x; i.e., we obtain with
probability px ¼ tr(ExðρÞ) an output ρx ¼ ExðρÞ=px.
From the definition of the free POVMs, it follows that
we can store the outcome x in the incoherent basis of an
ancillary system, which we write as

ĨðρÞ ¼
X
x

ExðρÞ ⊗ jxihxj; ð5Þ

and implement the subselection later using a free POVM. In
the special case of a POVM P, we can represent it by

P̃ðρÞ ¼
X
n

trðPnρÞjnihnj: ð6Þ

Treating subselection in this way, we can reduce our
analysis to trace preserving operations.
With subselection included into our framework, we call a

quantum operation free if it cannot turn a free POVM into a
nonfree one by applying the operation prior to the meas-
urement. This is exactly the case if it cannot transform
coherences into populations [52].
Definition 3.—A quantum operation Φd-inc is called

detection incoherent if and only if

ΔΦd-inc ¼ ΔΦd-incΔ: ð7Þ

The set of detection-incoherent operations is denoted
by DI.
Note that this condition has been called nonactivating in

Ref. [63]. With our convention for treating subselection,
this includes Definition 1 for POVMs. As we mentioned in
the introduction, it is both important to create and to detect
coherence; therefore one can define creation-incoherent
operations, i.e., operations which cannot create coherence.
In coherence theory, these operations are called MIO (for
maximally incoherent operations) [3,64] or nongenerating
in a general context in Ref. [63]. Operations that can neither
create nor detect coherence are called DIO (dephasing-
covariant incoherent operations) [53–56], classical oper-
ations [52], or commuting [63].
Definition 4.—A quantum operation Φc-inc from system

A to B is called creation incoherent if it cannot create

coherence in system B when none were present in
system A,

Φc-incΔ ¼ ΔΦc-incΔ: ð8Þ

A quantum operation Φdc-inc is called detection creation
incoherent if it can neither detect nor create coherence,

ΔΦdc-inc ¼ Φdc-incΔ: ð9Þ

Our contribution in this Letter is that we show how to
quantify the abilities to create and detect coherence in a
rigorous manner. Note that, formally, the three definitions
of free operations lead to different resource theories. In the
following, we will use “free operation” if it is unimportant
which specific choice we are considering. This allows us to
introduce the second ingredient to our resource theories, the
free superoperations, in a unified manner. A superoperation
is free if it is a sequential and/or parallel concatenation with
free operations.
Definition 5.—For free operations Φ, elemental free

superoperations are given by

E1;Φ½Θ� ¼ Φ ∘Θ; E2;Φ½Θ� ¼ Θ ∘Φ;

E3;Φ½Θ� ¼ Θ ⊗ Φ; E4;Φ½Θ� ¼ Φ ⊗ Θ: ð10Þ

A superoperation F is free if and only if it can be written as
a sequence of free elemental superoperations,

F ¼ Ein;Φn
;…; Ei3;Φ3

Ei2;Φ2
Ei1;Φ1

: ð11Þ

This definition comes from a quantum computational
setting: a free superoperation is a network of free operations
into which we can plug a quantum operation. A minimal
requirement on the free superoperations is that they trans-
form free operations into free operations, otherwise it
would be possible to create resources for free. This require-
ment can be checked directly, see the Supplemental
Material [23]. It is also straightforward to show that every
free superoperation can be composed using only three
elemental operations (see the Supplemental Material [23]
and Refs. [59,60]). Whilst we focus on the ability to detect
coherence in the main text, we present a few results for the
other two classes of free operations in the Supplemental
Material (see also Refs. [52,64]). As mentioned in the
introduction, the case of coherence treated here is an
example of our general setup: if one exchanges the resource
destroying map in Eq. (2), one can move on to
Definitions 3, 4, and 5. It is also possible to define free
operations without the usage of resource destroying maps
and to use Definition 5 for free superoperations [60].
Detecting coherence.—To quantify the amount of a

resource present in an operation, we follow the usual
axiomatic approach of quantum resource theories [1–10].
From physical considerations, we collect a set of defining
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properties that every measure of the resource should obey.
The first property is that the measure should be faithful,
which means that it needs to be zero on the set of free
operations and larger than zero on nonfree operations. The
second property is monotonicity under the free super-
operations; i.e., the amount of resource can only decrease
under the application of a free superoperation. With our
convention concerning subselection, this ensures monoto-
nicity under subselection as well [65]. The third property is
convexity and can be seen as a matter of convenience. It
ensures that mixing does not create resources. These
properties lead to the following definition.
Definition 6.—A functional M from quantum operations

to the positive real numbers is called a resource measure if
and only if

MðΘÞ ¼ 0 ⇔ Θ free;

MðΘÞ ≥ MðF ½Θ�Þ ∀Θ; ∀ free superoperationsF ;

MðΘÞ is convex: ð12Þ

A functional that is a measure according to the above
definition is of special interest if it has a clear operational
interpretation; i.e., if the number it puts on a resource is
directly connected to its value in a specific application.
Often resource measures are hard to evaluate; thus mea-
sures that have a closed form expression or can be
calculated efficiently using numerical methods are impor-
tant as well. In the following, we will give one resource
measure with respect to the ability to detect coherence that
can be calculated efficiently and another one with an
operational interpretation. Both involve norms on quantum
operations. Therefore we review some related terminology
first. A norm k · k on quantum operations is called sub-
multiplicative if and only if

kΘ1 ∘Θ2k ≤ kΘ1kkΘ2k ∀Θ1;Θ2 ð13Þ

and submultiplicative with respect to tensor products if and
only if

kΘ1 ⊗ Θ2k ≤ kΘ1kkΘ2k ∀Θ1;Θ2: ð14Þ

Norms with the above properties can be used to define
measures.
Proposition 7.—Let k · k denote a norm on quantum

operations which is both submultiplicative and submulti-
plicative with respect to tensor products. If kΦk ≤ 1 for all
Φ detection-incoherent operations, the functional

MðΘÞ ¼ min
Φ∈DI

kΔΘ − ΔΦk ð15Þ

is a measure in the detection-incoherent setting.
Choosing a particular norm in the above proposition, the

so-called completely bounded trace norm or diamond norm

[66], we find a measure that can be calculated efficiently.
The diamond norm is based on the trace norm, which is
defined for a linear operator A by [67]

kAk1 ¼ tr
� ffiffiffiffiffiffiffiffiffi

A†A
p �

: ð16Þ

The induced trace norm on a quantum operation (or more
general a superoperator) Θ is, as the name suggests,
defined by

kΘk1 ¼ maxfkΘðXÞk1∶kXk1 ≤ 1g: ð17Þ

Finally, the completely bounded trace norm or diamond
norm of a quantum channel is given by

kΘB←Ak⋄ ¼ sup
Z
kΘB←A ⊗ 1Zk1 ¼ kΘB←A ⊗ 1Ck1

with dimA ¼ dimC and has multiple applications in
quantum information [66–68]. With these definitions at
hand, we are ready to present our first measure.
Theorem 8.—The functional

M⋄ðΘÞ ¼ min
Φ∈DI

kΔΘ − ΔΦk⋄ ð18Þ

is a measure in the detection-incoherent setting. We call this
measure the diamond measure.
Rather surprisingly, we show in the Supplemental

Material [23] that this measure can be calculated effici-
ently using a semidefinite program [69] that is based on
Refs. [58,70,71]. A related measure is given in the
following theorem.
Theorem 9.—The functional

M̃⋄ðΘÞ ¼ min
Φ∈DI

kΔΘ − ΔΦk1 ð19Þ

is a measure in the detection-incoherent setting. We call it
the NSID measure (nonstochasticity in detection).
As we prove in the Supplemental Material [23], this

measure has an operational interpretation in our frame-
work: assume you obtain a single copy of a quantum
channel which is equal to Θ0 or Θ1 with probability

1
2
each.

The optimal probability Pcð1=2;Θ0;Θ1Þ to correctly guess
i ¼ 0, 1 if one can perform only detection-incoherent
measurements is given by (see also Ref. [72])

Pcð1=2;Θ0;Θ1Þ ¼
1

2
þ 1

4
max
jψi

kΔðΘ0 − Θ1Þjψihψ jk1:

Therefore, in a single shot regime, 1=2þ 1=4M̃⋄ðΘÞ is the
optimal probability to guess correctly if one obtained Θ or
the least distinguishable free operation, provided we can
use only free measurements. Accordingly, the measure M̃⋄
quantifies how well the visible part of an operation can be
approximated by a free one. This operational interpretation
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is the reason for the choice of the name NSID measure.
Note that a similar interpretation holds for the diamond
measure with the only difference that, in the auxiliary
system, nonfree measurements are allowed as well.
Therefore the diamond measure is an upper bound on
the NSID measure. The operational interpretation of this
measure (which satisfies faithfulness) proves that we
can distinguish at no cost all operations that can detect
coherence from those that cannot. As we argue in the
introduction and the Supplemental Material [23], this
is an important property that cannot be achieved using
any coherence theory on the level of states. In the
Supplemental Material, we give details of how this measure
can be evaluated and some examples.
Now that we have described a measure with an opera-

tional interpretation, a natural question is which quantum
operations maximize this measure. The answer is given by
the following proposition.
Proposition 10.—The maximum value of M̃⋄ðΘÞ for Θ a

quantum channel with input of dimension n and output of
dimension m is given by

2ðN0 − 1Þ
N0

; ð20Þ

where N0 ¼ minfn;mg. It is both saturated by a Fourier
transform in a subspace of dimension N0 and by a
measurement in the Fourier basis, encoding the outcomes
in the incoherent basis.
For transformations on qubits, this means that the

Hadamard gate is best suited to detect coherence in the
sense of the NSID measure. This can be seen as a reason
why e.g., the Deutsch-Jozsa algorithm [73,74] not only
starts but also finishes with Hadamard gates. It is not
enough to create coherence, it also has to be detected, i.e.,
used, in order to exploit it.
Conclusions.—We argued why the formulation of re-

source theories on the level of operations are a valuable
unifying concept and demonstrated at the example of
coherence theory how to construct them rigorously using
resource destroying maps [63]. These theories are based on
two main ingredients, the free operations and the free
superoperations. The free superoperations are sequential
and parallel concatenations with free operations, i.e., the
embedding into a network of free operations. Based on
physical considerations, we defined properties that a
measure of resources in an operation should obey, e.g.,
monotonicity under the free superoperations. We focused
particularly on the question how well a quantum operation
can detect coherence. This is important, since both the
ability to create and to detect coherence are necessary
prerequisites for operational advantages of quantum com-
putation over classical computation, and the latter cannot,
as we have shown, be addressed using resource theories on
the level of states. We presented two measures quantifying

the ability of an operation to detect coherence. The first can
be calculated efficiently using a semidefinite program. The
second, named the NSID measure, can be evaluated in an
iterative manner and has a clear operational interpretation.
Its value determines how well we can distinguish the given
quantum operation from the free operations in a single try.
Finally, we proved that Fourier transforms and measure-
ments in a Fourier basis maximize the NSID measure and
can therefore be considered optimal in the task of meas-
uring coherence.
Completion of the resource theories provided here is a

sizable task. It includes the question of manipulation,
quantification, and exploitation of the resourceful opera-
tions using free superoperations. A thorough answer to
these questions may lead to a better understanding of
operational advantages provided by quantum devices,
which in turn may lead to improved designs. Working
out our approach in scenarios different from coherence
theory will shed new light on other quantum properties.
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