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Quantum state smoothing is a technique for assigning a valid quantum state to a partially observed
dynamical system, using measurement records both prior and posterior to an estimation time. We show that
the technique is greatly simplified for linear Gaussian quantum systems, which have wide physical
applicability. We derive a closed-form solution for the quantum smoothed state, which is more pure than the
standard filtered state, while still being described by a physical quantum state, unlike other proposed
quantum smoothing techniques. We apply the theory to an on-threshold optical parametric oscillator,
exploring optimal conditions for purity recovery by smoothing. The role of quantum efficiency is
elucidated, in both low and high efficiency limits.
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Smoothing and filtering are techniques in classical
estimation of dynamical systems to calculate probability
density functions (PDFs) of quantities of interest at some
time t, based on available data from noisy observation of
such quantities in time. In filtering, the observed data up to
time t is used in the calculation. In smoothing, the observed
data both before (past) and after (future) t can be used. For
dynamical systems where real-time estimation of the
unknown parameters is not required, smoothing almost
always gives more accurate estimates than filtering. In the
quantum realm, numerous formalisms have been intro-
duced which use past and future information [1–7]. Many
of these ideas have been applied, theoretically and exper-
imentally, to the estimation of unknown classical param-
eters affecting quantum systems [8–14], or of hidden results
of quantum measurements [15–20]. The optimal improve-
ment obtained by using future information in these appli-
cations comes from using classical Bayesian smoothing to
obtain the PDF of the variables of interest.
Despite such applications of smoothing to quantum

parameter estimation, a quantum analogue for the classical
smoothed state (i.e., the PDF) was still missing. As
quantum operators for a system at time t do not commute
with operators representing the results of later measure-
ments on that system [21], a naïve generalization of the
classical smoothing technique would not result in a proper
quantum state [4,5,7]. As elucidated by Tsang [4] (see also
the Supplemental Material of Ref. [5]), such a procedure
would result in a “state” that gives the (typically anoma-
lous) weak value [2] as its expectation value for any
observable. Thus, we will refer to this type of smoothed
state for a quantum system as the smoothed weak-value
(SWV) state. In contrast to this, Guevara and Wiseman [22]
recently proposed a theory of quantum state smoothing
which also generalizes classical smoothing but which gives

a proper smoothed quantum state, i.e., both Hermitian and
positive semidefinite.
The quantum state smoothing theory of Ref. [22] con-

siders an open quantum system coupled to two baths (see
Ref. [12] for a similar idea). An observer, Alice, monitors
one bath and thereby obtains an “observed” measurement
record O. Another observer, Bob (who is hidden from
Alice), monitors the remaining bath, unobserved by Alice,
and thereby obtains an “unobserved” record U. If Alice

knew U⃖ as well as O⃖ (the back arrows indicating records in
the past), she would have maximum knowledge of the
quantum system, i.e., the “true” state ρO⃖;U⃖ at that time.
Thus, Alice’s filtered and smoothed states can be defined in
the same form of a conditioned state,

ρC ¼
X
U⃖

℘CðU⃖ÞρO⃖;U⃖; ð1Þ

where the summation is over all possible records unobserved
by Alice. For filtering (ρC ¼ ρF), the PDF of unobserved
records is ℘CðU⃖Þ ¼ ℘ðU⃖jO⃖Þ conditioned on her past record
O⃖. For smoothing (ρC ¼ ρS), one has ℘CðU⃖Þ ¼ ℘ðU⃖jO

↔
Þ

conditioned on Alice’s past-future record O
↔
. By construc-

tion, Eq. (1) guarantees the positivity of the smoothed
quantum state.
In this Letter we present the theory of quantum state

smoothing for linear Gaussian quantum (LGQ) systems.
This can be applied to a large number of physical systems,
e.g., multimodal light fields [23,24], optical, and optome-
chanical systems [13,20,21,25–35], atomic ensembles
[36–38], and Bose-Einstein condensates [39]. Because
of the nice properties of LGQ systems, we are able to
obtain closed-form solutions for the smoothed LGQ state.
This makes them much easier to study even than the
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two-level system originally considered in Ref. [22], as there
is no need to generate numerically the numerous unob-
served records appearing in the summation of Eq. (1). LQG
smoothing only requires solving a few additional equations
compared to classical smoothing for linear Gaussian (LG)
systems. The simplicity of our theory will enable easy
application to numerous physical systems, and also allows
analytical treatment of various measurement efficiency
regimes. We give such a treatment here for an optical
parametric oscillator (OPO) on threshold [21,25]. As
expected, our smoothed quantum state has higher purity
than the usual filtered quantum state, while the SWV state
is often unphysical, with purity larger than one.
We begin by reviewing the necessary theoretical back-

ground of classical LG systems and LGQ systems. We then
develop quantum state smoothing for LGQ systems and
obtain analytic results in different limits. Finally, we apply
LGQ smoothing to the on-threshold OPO.
LG systems and classical smoothing.—Consider a

classical dynamical system described by a vector of M
parameters x ¼ fx1; x2;…; xMg⊤. Here ⊤ denotes trans-
pose. This system is regarded as an LG system if and only if
it satisfies three conditions [21,40–45]. First, its evolution
can be described by a linear Langevin equation,

dx ¼ Axdtþ Edvp: ð2Þ
Here A (the drift matrix) and E are constant matrices and
dvp is the process noise, i.e., a vector of independent
Wiener increments satisfying

E½dvp� ¼ 0; dvpðdvpÞ⊤ ¼ Idt: ð3Þ
Here E½…� represents an ensemble average, and I is the
M ×M identity matrix. Second, knowledge about the
system is conditioned on a measurement record y that is
linear in x,

ydt ¼ Cxdtþ dvm; ð4Þ
where C is a constant matrix and the measurement noise
dvm is a vector of independent Wiener increments satisfy-
ing similar conditions to Eq. (3). It is possible for the
process noise and the measurement noise to be correlated,
e.g., frommeasurement backaction, which is described by a
nonzero cross-correlation matrix Γ, computed from Γ⊤dt ¼
EdvpðdvmÞ⊤. The third condition is that the initial state of
the system [i.e., the initial PDF of x, denoted as ℘ðxÞjt¼0] is
Gaussian; then the linearity conditions (first and second)
guarantee the conditioned state will remain Gaussian:

℘CðxÞ ¼ gðx; hxiC; VCÞ; ð5Þ
which is fully described by its mean hxiC and variance
(strictly, covariance matrix) VC ≡ hxx⊤iC − hxiChxi⊤C ,
throughout the entire evolution.

If the above criteria are met, one can compute a filtered
LG state conditioned only on the past record (before the
estimation time t). The filtered mean and variance are
given by

dhxiF ¼ AhxiFdtþKþ½VF�dwF; ð6Þ

dVF

dt
¼ AVF þ VFA⊤ þD −Kþ½VF�Kþ½VF�⊤; ð7Þ

where dwF ≡ ydt − ChxiFdt is a vector of innovations,
D ¼ EE⊤ is the diffusion matrix, and we have defined a
“kick” matrix, a function of V, via K�½V�≡ VC⊤ � Γ⊤.
Initial conditions for these filtering equations are the mean
and variance of the initial Gaussian state.
To solve for a smoothed LG state, one needs to include

conditioning on the future record, which can be obtained
from the retrofiltering equations

−dhxiR ¼ −AhxiRdtþK−½VR�dwR; ð8Þ

−
dVR

dt
¼ −AVR − VRA⊤ þD −K−½VR�K−½VR�⊤; ð9Þ

where K−½V� was defined above and dwR ≡ ydt−
ChxiRdt. As the leading negative signs suggest, these
equations are evolved backward in time, from a final
condition at t ¼ T. This is typically taken to be an
uninformative PDF. Combining the filtered and retrofil-
tered solutions Eqs. (6)–(9), one obtains a smoothed
LG state conditioned on the entire measurement record
[40–44],

hxiS ¼ VSðV−1
F hxiF þ V−1

R hxiRÞ; ð10Þ

VS ¼ ðV−1
F þ V−1

R Þ−1: ð11Þ

LGQ systems.—For a quantum system analogous to the
classical LG one, the system’s observables require unbounded
spectrums, represented by N bosonic modes. We denote such
a system by a vector of M ¼ 2N observable operators
x̂ ¼ ðq̂1; p̂1;…; q̂N; p̂NÞ⊤, where q̂k and p̂k are canonically
conjugate position andmomentumoperators for the kthmode,
obeying the commutation relation ½q̂k; p̂l� ¼ iℏδkl. The sys-
tem is called anLGQsystem if its dynamical andmeasurement
equations are isomorphic to those of a classical LG system
[21,25,46–49]. For quantum systems there are additional
constraints on the system’s dynamics [21]. For example,
the initial state must satisfy the Schrödinger-Heisenberg
uncertainty relation, V þ iℏΣ=2 ≥ 0. Here Σkl ¼ −i½x̂k; x̂l�
is the symplectic matrix and V is the covariance matrix
Vkl ¼ hx̂kx̂l þ x̂lx̂ki=2 − hx̂kihx̂li, for x̂k being an element of
x̂ and h·i being the usual quantum expectationvalue. These let
us represent the quantum state of an LGQ system by its
Gaussian Wigner function [21] defined as Wðx̌Þ ¼
g½x̌; hx̂i; V�, using dummy variable x̌.
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Quantum state smoothing for LGQ systems.—We now
apply the quantum state smoothing technique [22] to LGQ
systems. Following the Alice-Bob protocol introduced in
Eq. (1), a true state of the LGQ system, denoted by the

mean hx̂iT and a variance VT , is obtained given both O⃖ and
U⃖ records. That is, the filtering equations (6)–(7) apply, but
conditioned both on Alice’s observed record [of the form
similar to Eq. (4)]

yodt ¼ Cohx̂iTdtþ dwo; ð12Þ

and on Bob’s record, unobserved by Alice, yudt ¼
Cuhx̂iTdtþ dwu, with independent Wiener noises. The
equations for the true state are

dhx̂iT ¼ Ahx̂iTdtþKþ
o ½VT �dwo þKþ

u ½VT �dwu; ð13Þ

dVT

dt
¼ AVT þ VTA⊤ þD

−Kþ
o ½VT �Kþ

o ½VT �⊤ −Kþ
u ½VT �Kþ

u ½VT �⊤; ð14Þ

where K�
r ½V� ¼ VC⊤

r þ Γ⊤
r , for r ∈ fo; ug.

Since Alice has no access to Bob’s record, her condi-
tioned state (filtered or smoothed) is obtained by summing
over all possible true states of the system, with probability

weights conditional on Alice’s observed records (O⃖ or O
↔
,

respectively) as in Eq. (1). For LGQ systems, the state
depends on U⃖ only via the mean, Eq. (13). Therefore, we
can replace the (symbolic) sum in Eq. (1) by an integral:

ρC ¼
Z

℘Cðhx̂iTÞρTðhx̂iTÞdhx̂iT: ð15Þ

Now let us define a “haloed” variable x
̥
¼ hx̂iT for nota-

tional simplicity. We can replace the conditional state ρC
and true state ρT with their Wigner functions. The latter is

Gaussian: gðx̌;x
̥
; VTÞ. The integral in Eq. (15) convolves

this with the PDF ℘Cðx
̥
Þ conditioned on the observed

records. This PDF is a conditioned (filtered or smoothed)
LG distribution for x

̥
, based on the observed data,

℘Cðx
̥
Þ ¼ gðx

̥
; hx
̥
iC; V
̥
CÞ, where V

̥
C is the conditional

variance for the variable x
̥
[50]. As both functions inside

the integral Eq. (15) are Gaussian, the Wigner function for
ρC is also Gaussian:

gðx̌; hx̂iC; VCÞ ¼
Z

gðx
̥
; hx
̥
iC; V
̥
CÞgðx̌;x

̥
; VTÞdx

̥
: ð16Þ

By elementary properties of convolutions, we get the
conditioned mean hx̂iC ¼ hx

̥
iC and the conditioned vari-

ance VC ¼ V
̥
C þ VT . This will allow us to solve for the

filtered and smoothed quantum states for LGQ systems.

Now, all that remains is to apply classical LG estimation
theory (filtering or smoothing) to determine hx

̥
iC and V

̥
C.

We first obtain [50] filtering equations for x
̥
, using the past

observed record Eq. (12),

dhx
̥
iF ¼ Ahx

̥
iFdtþKþ

o ½V
̥
F þ VT �dw

̥
F; ð17Þ

dV
̥
F

dt
¼ AV

̥
F þ V

̥
FA⊤ þD

̥

−Kþ
o ½V
̥
F þ VT �Kþ

o ½V
̥
F þ VT �⊤; ð18Þ

where we have defined D
̥

¼ P
r∈fo;ugKþ

r ½VT �Kþ
r ½VT �⊤,

and dw
̥

F ¼ yodt − Cohx
̥
iFdt. We also show in Ref. [50]

that this haloed filtered variance is related to the variance of
the usual quantum filtered state VF (computed without
invoking the unobserved record) via VF ¼ V

̥
F þ VT with

the same mean hx̂iF ¼ hx
̥
iF, consistent with the convolu-

tion (16). For the retrofiltering equations for x
̥
, using the

future record, we have

−dhx
̥
iR ¼ −Ahx

̥
iRdtþK−

o ½V
̥
R − VT �dw

̥
R; ð19Þ

−
dV
̥
R

dt
¼ −AV

̥
R − V

̥
RA⊤ þD

̥

−K−
o ½V
̥
R − VT �K−

o ½V
̥
R − VT �; ð20Þ

which lead to a similar variance relation VR ¼ V
̥
R − VT

[50]. However, the minus sign in the V
̥
R relation indicates

that the convolution (16) does not apply for retrofiltering,
which propagates in the backward direction in time.
We then combine the haloed filtering and retrofiltering

equations, as in Eqs. (10) and (11), to obtain the haloed
smoothing equations, and using Eq. (16), we arrive at the
LGQ state smoothing equations

hx̂iS ¼ ðVS − VTÞ½ðVF − VTÞ−1hx
̥
iF

þ ðVR þ VTÞ−1hx
̥
iR�; ð21Þ

VS ¼ ½ðVF − VTÞ−1 þ ðVR þ VTÞ−1�−1 þ VT; ð22Þ

as the main result of this Letter. In the classical limit, where
there is no uncertainty relation for VT and we can let
VT → 0, these reproduce classical LG smoothing, Eqs. (10)
and (11), as expected.
The advantages LGQ state smoothing offers over filter-

ing are readily seen in Fig. 1, where we note that the purity
for a Gaussian state is defined as P ¼ ðℏ=2Þ

ffiffiffiffiffiffiffiffiffiffiffi
jVj−1

p
[21]

for a variance V. The smoothed state has a smaller variance
(higher purity) than the filtered state, but has a larger
variance than a pure state (purity less than unity). In
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contrast, the SWV state for the same system [i.e., using
Eqs. (10) and (11)] is unphysical (its ellipse is smaller than
that of a pure state).
Now that we have the closed-form expression for the

smoothed LGQ state, we can investigate, in the steady state,
some interesting limits inAlice’smeasurement efficiency ηo,
the fraction of the system output which is observed byAlice.
If, as in the OPO system we will consider later, the

unconditioned (ηo ¼ 0) variance diverges, then Alice’s
conditioned (filtered and retrofiltered) variances, if finite,
must grow as ηo → 0. From Eqs. (21) and (22), when VF
and VR are large, compared to VT , the smoothed LGQ state
reduces to the SWV state Eqs. (10) and (11). The SWV
state has the same form as classical smoothed states, which
often have the same scaling as filtered states, but with a
multiplicative constant improvement [8,14,51]. Con-
sequently, in the limit ηo → 0, we expect PSWV ¼ PS ∝
PF as functions of ηo.
In the opposite limit, ηo → 1, we analytically show [50]

that the relative purity recovery (RPR),

R ¼ PS − PF

1 − PF
; ð23Þ

a measure of how much the purity is recovered from
smoothing over filtering relative to the maximum recovery
possible, usually scales with the unobserved efficiency.
That is, R ∝ ηu ≡ 1 − ηo.
Example of the on-threshold OPO system.—We now

apply quantum state smoothing to the on-threshold OPO
[21,25], an LGQ system with N ¼ 1 described by the
master equation

ℏ_ρ ¼ −i½ðq̂ p̂þp̂ q̂Þ=2; ρ� þD½q̂þ ip̂�ρ: ð24Þ

The first term defines a Hamiltonian giving squeezing
along the p quadrature, while the second term describes
the oscillator damping. Here, the drift and diffusion
matrices are A ¼ diagð0;−2Þ and D ¼ ℏI. Let us assume
that Alice observes the damping channel via homodyne
detection. Therefore, the matrix Co in Eq. (12) is
Co ¼ 2

ffiffiffiffiffiffiffiffiffiffi
ηo=ℏ

p ðcos θo; sin θoÞ, where θo is the homodyne
phase [21,25]. For simplicity, we assume Bob also per-
forms a homodyne measurement, with a different phase θu,
so that Cu ¼ 2

ffiffiffiffiffiffiffiffiffiffi
ηu=ℏ

p ðcos θu; sin θuÞ. The measurement
backactions are described by matrices Γr ¼ −ℏCr=2,
for r ∈ fo; ug.
We now solve for filtered and smoothed states for the

OPO in steady state. We are particularly interested in the
RPR (23) of smoothing over filtering, and in the combi-
nations of homodyne phases that result in the largest RPR.
The RPR is always positive (see Fig. 2), meaning that the
smoothed quantum state always has higher purity than the
corresponding filtered one. If Alice’s phase θo is fixed, one
might guess that Bob’s phase giving the best purity
improvement should be the same, θu ¼ θo. However, that
is not at all true (see Fig. 2). The optimal θoptu is not a trivial
function of θo. Rather, θ

opt
u ≈ 0, i.e., Bob should measure

FIG. 1. Various long-time states of the on-threshold OPO
system in Eq. (24), represented by their 1-SD Wigner function
contours in phase space, centered at the origin. The homodyne
angles used by Alice and Bob (θo, θu) are at the black dot in
Fig. 2. The unconditional state (solid black) shows infinite and
finite variances in q and p, respectively, as a result of the damping
and squeezing. Alice’s filtered and smoothed states, are blue
(filled gray) and dashed-red ellipses, respectively. The dotted-
black ellipse shows the (pure) true state, conditioned on both
Alice’s and Bob’s results, while the dot-dashed green ellipse
shows the SWV state.

FIG. 2. (Top) Contour plots of the RPR, Eq. (23), for the OPO
system for different values of observed and unobserved homo-
dyne phases using ηo ¼ 0.5. The dashed line represents θo ¼ θu
and the solid line is the optimal θu (that giving the highest RPR
for each value of θo). The circle and the star relate to Figs. 1
and 3, respectively. (Bottom) Purity for the OPO’s filtered (solid
blue) and smoothed (dashed red) states, choosing the optimal θoptu

for each θo.
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the q quadrature, which is presumably related to the fact
that, without measurement in, the variance in q diverges.
We then examine, in Fig. 3, the low and high efficiency

limits for the OPO system at the starred point in Fig. 2. As
predicted earlier, in the limit ηo → 0 (left), the purities of
the smoothed LGQ state and the SWV state are almost
identical, and have a constant factor of improvement over
that for filtering, as can be verified analytically [50].
However, PSWV begins to separate from PS when the
purities are no longer small, as the former proceeds to have
purity greater than 1 when ηo > 0.06. In the limit ηo → 1
(right), we see that the RPR has linear scaling in
ηu ¼ 1 − ηo, as expected. The approximation holds sur-
prisingly well even when ηu is not small.
To conclude, we have developed the theory of quantum

state smoothing, which gives valid smoothed quantum
states, for LGQ systems, a class of systems with wide
physical applicability. By utilizing the Gaussian properties,
we obtained closed-form smoothing solutions that do not
require simulations of ensembles of unobserved measure-
ment records and corresponding true states. This enabled us
to perform detailed analysis of the smoothed quantum state
for various measurement regimes. A question for future
work is to understand the (numerically found) optimal
strategy for greatest improvement in the purity. There are
also interesting questions regarding how the smoothed
LGQ variance (22) would react to inserting an invalid true
state [i.e., one that does not solve Eq. (14)]. Finally, we
could compare the smoothed LGQ state to other state
estimation techniques using future information, such as the
most likely path approach in Refs. [6,52].
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