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Quantum state tomography is the task of inferring the state of a quantum system from measurement data.
A reliable tomography scheme should not only report an estimate for that state, but also well-justified error
bars. These may be specified in terms of confidence regions, i.e., subsets of the state space which contain
the system’s state with high probability. Here, building upon a quantum generalization of Clopper-Pearson
confidence intervals—a notion known from classical statistics—we present a simple and reliable scheme
for generating confidence regions. These have the shape of a polytope and can be computed efficiently. We
provide several examples to demonstrate the practical usability of the scheme in experiments.
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Quantum state tomography (QST) may be regarded as
the quantum variant of statistical estimation theory. Given
data obtained from measuring a quantum system, the goal
is to estimate the system’s state. QST has become an
increasingly important tool in experimental physics, espe-
cially in the area of quantum information technology.
Accordingly, a lot of work has been put into the develop-
ment of techniques to increase its efficiency. Among them
are methods to reduce the number of different measure-
ments needed and to keep the (generally unfavorable)
scaling of the amount of required data in the dimension
of the system under control [1–9].
Nonetheless, only relatively little attention has been paid

to the problem of statistical errors in QST. Statistical errors
are due to unavoidable fluctuations, resulting from the fact
that the collected data always represent a finite sample. In
other words, they are those errors that remain even if the
experiment is implemented perfectly and shielded from any
environmental noise.
In experimental sciences, statistical errors are generally

reported in terms of error bars, which are obtained by
standard methods from classical statistics. In the context of
quantum information, techniques to determine error esti-
mates have been developed for specific tasks, such as
entanglement verification and quantum metrology [10–16].
These are however not universal enough to be applicable to
QST. In fact, an agreed-upon scheme for reporting the
accuracy of estimates in QST does not seem to exist.
Experimental results in QST are therefore often stated
without error bars, or with error bars that do not have a
well-defined operational meaning. A widespread approach
is to use point estimators for the system’s state, such as
maximum likelihood estimation (MLE) [17,18] (for exam-
ples, see Refs. [19–22]), and take the width of the like-
lihood function as a measure for their accuracy [23].
Another common, heuristic, method to determine the
accuracy is numerical bootstrapping, or resampling

[24,25]. The resulting error bars then correspond to the
variance of the point estimators. But since these are
generally highly biased, they do not correctly reflect the
uncertainty in the state estimate (see Ref. [26] for a
discussion). A notable exception is Ref. [27], where a
point estimator has been proposed whose distance to the
true state is provably below a given bound with high
probability.
The problems described above can be avoided with

methods that, rather than giving point estimates, yield
regions in state space. The idea is that these regions contain,
with high probability, the (unknown) state ρ, i.e., the state
in which the system was prepared. Depending on what is
meant by “high probability,” one talks about credibility
regions or confidence regions.
Credibility regions are motivated by the Bayesian

approach to probability theory, where probabilities are
interpreted as measures for personal belief or knowledge
[28–31]. To use this approach in QST, it is necessary to
specify a prior, i.e., a probability distribution over the
possible states ρ, that reflects one’s personal belief before
considering the measurement data. The corresponding
credibility region obtained from QST then has the property
that it contains ρ with high probability according to the
posterior belief, i.e., the updated belief one would have
after taking into account the measurement data. The
reported credibility region thus has a well-defined opera-
tional meaning—but only for those who agree with the
prior. Unfortunately, there is no unique natural choice for
the latter; even when demanding certain symmetries, the
class of possible priors is usually infinitely large.
Confidence regions avoid this prior dependence. While

they are generally larger than the credibility regions of the
Bayesian approach, they contain the unknown state ρ with
high probability—independently of what the prior was.
Currently, there exist two approaches to obtain confidence
regions. One of them, due to Blume-Kohout [26] and
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Glancy et al. [32], uses a construction based on the
computation of likelihood ratios. Although supported by
heuristic arguments, it has, however, to the best of our
knowledge, not been established rigorously that the con-
structed regions are valid confidence regions. In the other
approach, due to Christandl and Renner [33] and Faist and
Renner [34], confidence regions are constructed by extend-
ing credibility regions for a particular symmetric prior.
While the validity of these regions has been proved
rigorously, their size is far from optimal (see the discussion
below).
In this Letter, we propose an alternative method to

determine confidence regions in QST. It is based upon a
generalization of a notion from classical statistics, known
as Clopper-Pearson confidence intervals [35]. Given data
from any informationally complete measurement, the
corresponding confidence regions have the shape of a
polytope (see Fig. 1), with facets that can be computed
efficiently. As we shall demonstrate, this simple structure
can also be exploited to optimize the choice of tomographic
measurements for more accuracy.
In classical estimation theory, one of the most basic

problems is to determine the bias P of a biased coin from a
given sample of tosses. The Clopper-Pearson interval
solves this problem “exactly,” i.e., without involving
approximations. In particular, the interval represents a
reliable confidence region for P, even in extreme cases,
e.g., when P ≈ 0 or P ≈ 1, in which other schemes may fail.
This feature turns out to be crucial for QST, where the
measurement statistics often contains such extreme cases,
especially when the unknown state is close to the boundary
of the state space.
In QST, one usually considers the following scenario

(see Ref. [33] for a more general treatment, which does not

assume identically repeated preparations). A d-dimensional
quantum system is repeatedly prepared in the same
unknown state ρ, i.e., an element of the set SðHdÞ of
density operators on a d-dimensional Hilbert space. After
each preparation, a measurement, described by a positive
operator valued measure (POVM) onHd with elements Ei,
for i ¼ 1;…; k, is applied. In the common case of projec-
tive measurements, these elements are just the projectors
belonging to the different possible measurement outcomes
i. The results presented here are, however, valid for
arbitrary (not necessarily projective) POVM elements Ei,
which is useful, for instance, to model noisy measurements
[37]. After n preparation-and-measurement rounds, the data
can be brought into the form of a k-tuple n ≔ ðn1;…; nkÞ,
where ni denotes the number of occurrences of an outcome
corresponding to Ei.
We are interested in constructing a QST procedure that

computes, from the measurement outcome n, a confidence
region, denoted by ΓðnÞ, for any desired confidence level
1 − ε, where ε > 0. This means that, except with proba-
bility ε, the unknown state ρ is contained in ΓðnÞ; i.e.,

Pr½ρ ∈ ΓðnÞ� ≥ 1 − ε:

Crucially, this bound is supposed to hold for any arbitrary ρ
(which would not be the case for a credibility region, where
ρmust be sampled from a given prior), whereas Pr½·� should
be understood as the probability taken over all possible
outcomes n [40].
We break down the problem of constructing confidence

regions into determining a confidence half-space for
each POVM element Ei, depending on the measured
frequency ni=n of the corresponding outcome. The inter-
section of all such half-spaces, for all the measurement
POVM elements, then forms a confidence region, as
asserted by the following theorem. For its formulation,
we use the binary relative entropy, which is defined as
DðxkyÞ ¼ x logðx=yÞ þ ð1 − xÞ logð1 − x=1 − yÞ. We also
introduce a function δnðm; νÞ that returns the positive root δ
of D½ðm=nÞkðm=nÞ þ δ� ¼ −ð1=nÞ logðνÞ.
Theorem 1.—Consider a QST setup as described above,

with unknown state ρ ∈ SðHdÞ and measurements defined
by a k-elements POVM fEig. Let 1 − ε be the desired
confidence level. For any possible measurement data
n ¼ ðn1;…; nkÞ and for any i, define

ΓiðniÞ ¼
�
σ ∈ SðHdÞ∶trðEiσÞ ≤

ni
n
þ δn

�
ni;

ε

k

��
:

Then their intersection ΓðnÞ ≔ ⋂iΓiðniÞ is a confidence
region with confidence level 1 − ε.
Proof.—The proof consists of two steps. We first

show that the conditions for the confidence region can
be reduced to the Clopper-Pearson construction. We then

FIG. 1. Confidence polytopes for QST on a qubit. The plots
show confidence polytopes with confidence level 0.999, obtained
from data of simulated measurements on a single qubit. The
polytopes lie within the Bloch sphere, which represents the entire
state space of the qubit. In (a), the measurement is defined by six
Pauli projectors, along the X, Y, and Z directions, and the
polytope is a rectangular box whose normal directions are given
by the three Pauli operators. In (b), the measurement operators are
chosen such that they form a symmetrical informationally
complete (SIC) POVM [36,37]. In this case, the resulting
confidence polytope is the intersection of two tetrahedrons whose
normals are given by the measurement directions.
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use known results about this construction to conclude the
argument [39]. ▪
Given a family λ ¼ fλαg of d2 − 1 generalized Pauli

matrices satisfying the orthogonality relation trλαλβ ¼ 2δαβ,
we can embed the spaceSðHdÞ of density operatorsρ into the
Euclidean space Rd2−1 of vectors r via the relation [41]

ρ ¼ 1

d

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðd − 1Þ

2

r
r · λ

�
:

The Euclidean metric on Rd2−1 then corresponds to the
Hilbert-Schmidt metric for SðHdÞ [42]. Similarly, we can
represent each POVM element Ei by a vector ηi in Rd2−1;
i.e.,

Ei ¼
1

mi

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðd − 1Þ

2

r
ηi · λ

�
;

with mi such that
P

ið1=miÞ ¼ 1. Theorem 1 may now be
rephrased in terms of these representations in Rd2−1.
Corollary 1.—Consider a QST setup as in Theorem 1,

with an unknown state ρ parametrized by r ∈ Rd2−1 and
POVM fEig parametrized by ηi ∈ Rd2−1. Then the inter-
section of the embedding of the state space SðHdÞ in Rd2−1

with the half-spaces of all r that satisfy

1þ ðd − 1Þr · ηi ≤ mi

�
ni
n
þ δn

�
ni;

ε

k

��
ð1Þ

represents a confidence region with confidence level 1 − ε.
The results above may be generalized by replacing the

argument ϵ=k to δn by any partition εi of unity [39]. One
may then optimize εi for the tightest confidence region.
However, even without this optimization (which may be
hard to carry out), the confidence region is rather tight, as
discussed below.
If the measurement POVM is informationally complete,

the inequalities Eq. (1) define the facets of a polytope, the
confidence polytope. From this polytope one can estimate
any desired figure of merit (such as the fidelity to a
reference state; see Table I for other examples) and obtain
error bars for it. The latter are given in terms of(1 − ε)
confidence intervals, which one can obtain via the follow-
ing procedure.
(i) Choose a convenient basis λ, e.g., the basis corre-

sponding to the measurement axis, and compute the
representation ηi, mi for all k elements Ei of the POVM.
(ii) Compute δn½ni; ðε=kÞ� for any of the k measurement

outcomes i and collect the corresponding inequal-
ities Eq. (1).
(iii) Sample states from the polytope defined by the k

inequalities and compute the figure of merit for each of
them [37].

(iv) The confidence interval is approximated by the
maximum and minimum of the figure of merit among all
sampled states.
For illustration we provide examples of simple QST

scenarios. The first is QSTon a single qubit, where the state
space is three dimensional, so that the confidence polytopes
can be depicted easily (Fig. 1). We also demonstrate QST
on a noisy Bell state with simulated measurement data
(Table I) and on s-qubit GHZ states [45] for s ¼ 2, 3, 4 with
data from IBM’s Q Experience [37,44] (Table II). For all
our examples we chose a confidence level defined
by ε ¼ 0.001.
The shape of the confidence polytopes provides infor-

mation about the distribution of the statistical errors.
This, in turn, enables the choice of particular additional
measurements to improve the precision of QST. We
demonstrate this with QST on a single qubit. (Its low
dimensionality allows us to illustrate the idea by intuitive
plots in the Bloch sphere picture, but a generalization to
higher-dimensional spaces is straightforward.) We start
with a biased informationally complete POVM, which
may be regarded as a skewed version of a symmetrical
informationally complete (SIC) POVM [see Fig. 2(a)]. The
polytope obtained after 5000 measurements is much more
extended in the X and the Y direction than in the Z direction

TABLE I. QST of simulated noisy Bell state. A confidence
polytope with confidence level 0.999 was generated for data from
simulated SIC POVM measurements on 104 copies of a noisy
Bell state ρ ¼ 0.9Φþ þ 0.1 1

4
. The confidence intervals are

shown, which are derived from the confidence polytope, for
various figures of merit, such as the fidelity to and the distance
from particular reference states (MLE denotes the state obtained
by maximum likelihood estimation), or the negativity, which is a
measure for entanglement [43].

Reference Fidelity Trace distance Negativity

MLE state >0.973 <0.0902
(0.393, 0.459)Perfect Bell

state Φþ
(0.944, 0.980) (0.0546, 0.133)

TABLE II. QST of GHZ states on IBM’s Q Experience. GHZ
states of 2, 3, and 4 qubits were prepared on IBM’s 5-qubit device
“ibmqx2” and then measured with respect to the Pauli basis on
each qubit. The sample size is given by the number of different
measurement directions times the shot count (each measurement
is repeated 1024 times). The third and fourth columns show the
deviation from perfect GHZ states. The confidence level is set at
0.999.

Data size n Fidelity Trace distance Negativity

GHZ2 9 × 1024 (0.903, 0.940) (0.131, 0.208) (0.318, 0.386)
GHZ3 27 × 1024 (0.837, 0.869) (0.313, 0.371) not applicable
GHZ4 81 × 1024 (0.944, 0.980) (0.0546, 0.133) not applicable
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[Fig. 2(b)]. Therefore, 1000 extra measurements along both
the X and the Y direction help to “refine” the polytope,
yielding a smaller confidence region [Fig. 2(c)].
In higher dimensions, extracting the relevant geometrical

information can be computationally expensive. One may,
however, simplify this task by considering a bounding box
in the representation space Rd2−1, defined as the minimum
enclosing hyperrectangle with faces perpendicular to the
axes given by the basis λ. Ideally, this basis should be
chosen such that it contains experimentally accessible
observables (e.g., tensor powers of Pauli matrices). Since
the orientation of the bounding box is fixed by the basis, the
corners of the box can be determined via simple linear
programs. If a particular edge of the bounding box is long,
it implies that the confidence polytope is more extended in
that direction, and further measurements along the corre-
sponding axis would be effective in reducing its size.
Confidence regions have the advantage over Bayesian

credible regions that they do not rely on any prior knowl-
edge. Conversely, credibility regions are generally smaller
than confidence regions, thus giving tighter state estimates
[47]. Clearly, if the prior is already highly peaked around
the actual (unknown) state of the system, the credibility
regions obtained by QST can be arbitrarily small. However,
numerical results indicate that, in the case of relatively flat
priors, the resulting credibility regions are comparable in
size to the confidence polytopes introduced here.
Specifically, we take priors defined by the Hilbert-

Schmidt measure dρ [46]. A region ΓðnÞ of the state
space has credibility 1 − εb with respect to this prior if the
condition

Z
ΓðnÞ

μnðρÞdρ ≥ 1 − εb ð2Þ

holds, where μn is the posterior conditioned on the
collected data n [37]. For our comparison, we take ΓðnÞ
to be a ð1 − εÞ confidence polytope as in Theorem 1 and
determine its credibility level εb by Eq. (2). We then plot
the ratio ε=εb for randomly chosen states. As shown in
Fig. 3, the numerics indicate that this ratio does not scale

with the dimension of the measured quantum system nor
with the data size. Confidence polytopes therefore provide
rather tight estimates for the unknown state. In particular,
they outperform the earlier construction proposed by
Christandl and Renner [33]. In the latter, ð1 − εÞ confidence
regions are obtained from particular ð1 − εbÞ credibility
regions, but ε is larger than εb by a factor polynomial in the
dimension of the measured system [48].
The method we presented here is based on Clopper-

Pearson confidence intervals. In classical statistics, there
exist several alternative methods to determine confidence
intervals, many of which rely however on approximations
[48,50–54]. Some of these methods yield confidence
intervals that are smaller than Clopper-Pearson intervals
and thus seem to have more prediction power [52,54].
Conversely, Clopper-Pearson confidence intervals are a
safe choice, in the sense that they never result in an
overestimation of the confidence level. Furthermore, for
sample sizes n of the order 105, which is common in QST,
the actual coverage probability of the Clopper-Pearson
intervals is very close to the claimed confidence level [52].
Confidence polytopes as proposed here may also be

combined with methods for dimension-scalable QST.

FIG. 2. Optimizing the information content of measurements. The red dots in (a) represent the elements of a skewed SIC POVM,
which has more distinguishing power in the Z direction than in the X and Y directions. (b) Confidence polytope that is obtained from
5000 measurements defined by this POVM. Panel (c) depicts the effect of 1000 additional projective measurements in both the X and the
Y direction. The red planes represent the new facets introduced by the extra measurements.

FIG. 3. Confidence versus credibility regions. The plots show
the ratio ε=εb between the confidence and credibility levels of a
polytope constructed according to the prescription of Theorem 1,
interpreted as a confidence region and as a credibility region,
respectively. Each dot was obtained by QST on n copies of a
simulated state chosen at random from a d-dimensional state
space, evaluated with Ref. [49]. Although there are fluctuations
due to the different choices of states and measurement outcomes,
no scaling in the data size n or the dimension d is observed.
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These are based on additional assumptions about the
unknown state, e.g., that it has bounded rank [55], that
it is permutation invariant [6], or that it has a matrix product
state structure [1]. These assumptions generally restrict the
relevant state space. Accordingly, it is sufficient to con-
struct confidence polytopes within this restricted space.
As shown above, rather than reporting the full confi-

dence polytope as the outcome of a QST experiment, it is
often sensible to characterize it with one (or a few)
parameters. One could treat the state obtained from any
point estimation scheme, such as MLE or constrained least
square, as a reference and report its maximum distance to
the polytope boundary as the error bar. In this sense, our
methods, rather than replacing current state estimation
schemes, endow them with error bars that characterize
the statistical (un)certainty of the estimates.

We thank Philippe Faist for providing the Tomographer
software, and Rotem Arnon-Friedman, Kenny Choo,
Johannes Heinsoo, Raban Iten, Joseph Renes, Ernest
Tan, Yuxiang Yang, and Chi Zhang for useful discussions.
This work received support from the Swiss National
Science Foundation via the National Center for
Competence in Research “QSIT” and from the Air Force
Office of Scientific Research (AFOSR) via Grant
No. FA9550-16-1-0245.

[1] M. Cramer, M. B. Plenio, S. Flammia, D. Gross, S. Bartlett,
R. Somma, O. Landon-Cardinal, Y.-K. Liu, and D. Poulin,
Nat. Commun. 1, 149 (2010).

[2] D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert,
Phys. Rev. Lett. 105, 150401 (2010).

[3] S. Aaronson, Proc. R. Soc. A 463, 3089 (2007).
[4] C. Ferrie, Phys. Rev. Lett. 113, 190404 (2014).
[5] F. Huszár and N. M. T. Houlsby, Phys. Rev. A 85, 052120

(2012).
[6] G. Tóth, W. Wieczorek, D. Gross, R. Krischek, C.

Schwemmer, and H. Weinfurter, Phys. Rev. Lett. 105,
250403 (2010).

[7] D. Goyeneche, G. Cañas, S. Etcheverry, E. S. Gómez, G. B.
Xavier, G. Lima, and A. Delgado, Phys. Rev. Lett. 115,
090401 (2015).

[8] G. I. Struchalin, I. A. Pogorelov, S. S. Straupe, K. S.
Kravtsov, I. V. Radchenko, and S. P. Kulik, Phys. Rev. A
93, 012103 (2016).

[9] R. J. Chapman, C. Ferrie, and A. Peruzzo, Phys. Rev. Lett.
117, 040402 (2016).

[10] M. Walter and J. M. Renes, IEEE Trans. Inf. Theory 60,
8007 (2014).

[11] T. Sugiyama, Phys. Rev. A 91, 042126 (2015).
[12] M. Baur, A. Fedorov, L. Steffen, S. Filipp, M. P. da Silva,

and A. Wallraff, Phys. Rev. Lett. 108, 040502 (2012).
[13] D. Rosset, R. Ferretti-Schöbitz, J.-D. Bancal, N. Gisin, and

Y.-C. Liang, Phys. Rev. A 86, 062325 (2012).
[14] R. Blume-Kohout, J. O. S. Yin, and S. J. van Enk, Phys. Rev.

Lett. 105, 170501 (2010).

[15] J. Řeháček, D. Mogilevtsev, and Z. Hradil, New J. Phys. 10,
043022 (2008).

[16] B. Jungnitsch, S. Niekamp, M. Kleinmann, O. Gühne, H.
Lu, W.-B. Gao, Y.-A. Chen, Z.-B. Chen, and J.-W. Pan,
Phys. Rev. Lett. 104, 210401 (2010).

[17] Z. Hradil, Phys. Rev. A 55, R1561 (1997).
[18] Z. Hradil, J. Řeháček, J. Fiurášek, and M. Ježek, in

Quantum State Estimation, edited by M. Paris and J.
Řeháček (Springer-Verlag, Berlin Heidelberg, 2004), p. 59.

[19] C. F. Roos, G. P. T. Lancaster, M. Riebe, H. Häffner, W.
Hänsel, S. Gulde, C. Becher, J. Eschner, F. Schmidt-Kaler,
and R. Blatt, Phys. Rev. Lett. 92, 220402 (2004).

[20] K. J. Resch, P. Walther, and A. Zeilinger, Phys. Rev. Lett.
94, 070402 (2005).

[21] R. Blatt and D. Wineland, Nature (London) 453, 1008
(2008).

[22] S. Filipp, P. Maurer, P. J. Leek, M. Baur, R. Bianchetti, J. M.
Fink, M. Göppl, L. Steffen, J. M. Gambetta, A. Blais et al.,
Phys. Rev. Lett. 102, 200402 (2009).

[23] T. Sugiyama, P. S. Turner, and M. Murao, Phys. Rev. A 83,
012105 (2011).

[24] J. P. Home, D. Hanneke, J. D. Jost, J. M. Amini, D.
Leibfried, and D. J. Wineland, Science 325, 1227 (2009).

[25] R. J. Tibshirani and B. Efron, An Introduction to the
Bootstrap (CRC Press, New York, 1993), p. 168.

[26] R. Blume-Kohout, arXiv:1202.5270.
[27] T. Sugiyama, P. S. Turner, and M. Murao, Phys. Rev. Lett.

111, 160406 (2013).
[28] R. Blume-Kohout, New J. Phys. 12, 043034 (2010).
[29] J. Shang, H. K. Ng, A. Sehrawat, X. Li, and B. G. Englert,

New J. Phys. 15, 123026 (2013).
[30] C. Ferrie, New J. Phys. 16, 023006 (2014).
[31] C. Granade, J. Combes, and D. G. Cory, New J. Phys. 18,

033024 (2016).
[32] S. Glancy, E. Knill, and M. Girard, New J. Phys. 14, 095017

(2012).
[33] M. Christandl and R. Renner, Phys. Rev. Lett. 109, 120403

(2012).
[34] P. Faist and R. Renner, Phys. Rev. Lett. 117, 010404 (2016).
[35] C. J. Clopper and E. S. Pearson, Biometrika 26, 404 (1934).
[36] J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M.

Caves, J. Math. Phys. (N.Y.) 45, 2171 (2004).
[37] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.122.190401 for mea-
surements modeled by arbitrary POVMs which are dis-
cussed in Sec. D, Sec. A for a general formulation and for
the proof of Theorem 1, which includes Refs. [38,39], Sec. F
for a description of the method we used for the sampling of
states from a confidence polytope, Sec. B for the details of
IBM’s Q Experience demonstration, and also refer Sec. C.

[38] W. Hoeffding, J. Am. Stat. Assoc. 58, 13 (1963).
[39] H. Chernoff, Ann. Math. Stat. 23, 493 (1952).
[40] The bound does not necessarily hold conditioned on the

event that a particular outcome n occurred, i.e., the condi-
tional probability that ρ ∈ ΓðnÞ may be larger or smaller
than 1 − ε; see Ref. [33] for a discussion.

[41] R. A Bertlmann and P. Krammer, J. Phys. A 41, 235303
(2008).

[42] I. Bengtsson and K. Życzkowski, Geometry of Quantum
States: An Introduction to Quantum Entanglement

PHYSICAL REVIEW LETTERS 122, 190401 (2019)

190401-5

https://doi.org/10.1038/ncomms1147
https://doi.org/10.1103/PhysRevLett.105.150401
https://doi.org/10.1098/rspa.2007.0113
https://doi.org/10.1103/PhysRevLett.113.190404
https://doi.org/10.1103/PhysRevA.85.052120
https://doi.org/10.1103/PhysRevA.85.052120
https://doi.org/10.1103/PhysRevLett.105.250403
https://doi.org/10.1103/PhysRevLett.105.250403
https://doi.org/10.1103/PhysRevLett.115.090401
https://doi.org/10.1103/PhysRevLett.115.090401
https://doi.org/10.1103/PhysRevA.93.012103
https://doi.org/10.1103/PhysRevA.93.012103
https://doi.org/10.1103/PhysRevLett.117.040402
https://doi.org/10.1103/PhysRevLett.117.040402
https://doi.org/10.1109/TIT.2014.2365174
https://doi.org/10.1109/TIT.2014.2365174
https://doi.org/10.1103/PhysRevA.91.042126
https://doi.org/10.1103/PhysRevLett.108.040502
https://doi.org/10.1103/PhysRevA.86.062325
https://doi.org/10.1103/PhysRevLett.105.170501
https://doi.org/10.1103/PhysRevLett.105.170501
https://doi.org/10.1088/1367-2630/10/4/043022
https://doi.org/10.1088/1367-2630/10/4/043022
https://doi.org/10.1103/PhysRevLett.104.210401
https://doi.org/10.1103/PhysRevA.55.R1561
https://doi.org/10.1103/PhysRevLett.92.220402
https://doi.org/10.1103/PhysRevLett.94.070402
https://doi.org/10.1103/PhysRevLett.94.070402
https://doi.org/10.1038/nature07125
https://doi.org/10.1038/nature07125
https://doi.org/10.1103/PhysRevLett.102.200402
https://doi.org/10.1103/PhysRevA.83.012105
https://doi.org/10.1103/PhysRevA.83.012105
https://doi.org/10.1126/science.1177077
http://arXiv.org/abs/1202.5270
https://doi.org/10.1103/PhysRevLett.111.160406
https://doi.org/10.1103/PhysRevLett.111.160406
https://doi.org/10.1088/1367-2630/12/4/043034
https://doi.org/10.1088/1367-2630/15/12/123026
https://doi.org/10.1088/1367-2630/16/2/023006
https://doi.org/10.1088/1367-2630/18/3/033024
https://doi.org/10.1088/1367-2630/18/3/033024
https://doi.org/10.1088/1367-2630/14/9/095017
https://doi.org/10.1088/1367-2630/14/9/095017
https://doi.org/10.1103/PhysRevLett.109.120403
https://doi.org/10.1103/PhysRevLett.109.120403
https://doi.org/10.1103/PhysRevLett.117.010404
https://doi.org/10.1093/biomet/26.4.404
https://doi.org/10.1063/1.1737053
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.190401
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.190401
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.190401
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.190401
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.190401
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.190401
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.190401
https://doi.org/10.1080/01621459.1963.10500830
https://doi.org/10.1214/aoms/1177729330
https://doi.org/10.1088/1751-8113/41/23/235303
https://doi.org/10.1088/1751-8113/41/23/235303


(Cambridge University Press, Cambridge, England, 2017),
p. 310.

[43] G. Vidal and R. F. Werner, Phys. Rev. A 65, 032314 (2002).
[44] IBM Quantum Experience, https://quantumexperience.ng

.bluemix.net/qx.
[45] An s-qubit GHZ state is defined as jψi¼ðj0i⊗sþj1i⊗sÞ= ffiffiffi

2
p

.
[46] Given the Haar measure dϕ over the purification space

H ⊗ K, with K isomorphic to H, the Hilbert-Schmidt
measure over SðHÞ; dρ, is induced by tracing out K.

[47] E. T. Jaynes, inE. T. Jaynes: Papers on Probability, Statistics
and Statistical Physics, edited by R. D. Rosenkrantz, Lecture
Notes in Computer Science Vol. 158 (Springer Science,
Netherlands, 1989), p. 149.

[48] C. R. Blyth and H. A. Still, J. Am. Stat. Assoc. 78, 108
(1983).

[49] P. Faist, The Tomographer Project, https://github.com/
Tomographer/tomographer.

[50] I. Sakakibara, E. Haramo, A. Muto, I. Miyajima, and Y.
Kawasaki, Am. J. Biostat. 4, 11 (2014).

[51] A. Agresti and B. A. Coull, Am. Stat. 52, 119 (1998).
[52] M. Thulin, J. Stat. 8, 817 (2014).
[53] E. B Wilson, J. Am. Stat. Assoc. 22, 209 (1927).
[54] L. D. Brown, T. T. Cai, and A. DasGupta, Stat. Sci. 16, 101

(2001).
[55] C. H. Baldwin, I. H. Deutsch, and A. Kalev, Phys. Rev. A

93, 052105 (2016).

PHYSICAL REVIEW LETTERS 122, 190401 (2019)

190401-6

https://doi.org/10.1103/PhysRevA.65.032314
https://quantumexperience.ng.bluemix.net/qx
https://quantumexperience.ng.bluemix.net/qx
https://quantumexperience.ng.bluemix.net/qx
https://quantumexperience.ng.bluemix.net/qx
https://doi.org/10.1080/01621459.1983.10477938
https://doi.org/10.1080/01621459.1983.10477938
https://github.com/Tomographer/tomographer
https://github.com/Tomographer/tomographer
https://github.com/Tomographer/tomographer
https://doi.org/10.3844/amjbsp.2014.11.20
https://doi.org/10.2307/2685469
https://doi.org/10.1214/14-EJS909
https://doi.org/10.1080/01621459.1927.10502953
https://doi.org/10.1214/ss/1009213286
https://doi.org/10.1214/ss/1009213286
https://doi.org/10.1103/PhysRevA.93.052105
https://doi.org/10.1103/PhysRevA.93.052105

