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Perfect trapping of light in a subwavelength cavity is a key goal in nanophotonics. Perfect trapping has
been realized with optical bound states in the continuum (BIC) in waveguide arrays and photonic crystals;
yet the formal requirement of infinite periodicity has limited the experimental realization to structures with
macroscopic planar dimensions. We characterize BICs in a silicon nanowire (NW) geometric superlattice
(GSL) that exhibits one-dimensional periodicity in a compact cylindrical geometry with a subwavelength
diameter. We analyze the scattering behavior of NWGSLs by formulating temporal coupled mode theory to
include Lorenz-Mie scattering, and we show that GSL-based BICs can trap electromagnetic energy for an
infinite lifetime and exist over a broad range of geometric parameters. Using synthesized NW GSLs tens of
microns in length and with variable pitch, we demonstrate the progressive spectral shift and disappearance
of Fano resonances in experimental single-NW extinction spectra as a manifestation of BIC GSL modes.
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Trapping light in subwavelength structures is of utmost
importance in wave physics [1–3] and is central to a wide
range of photonic and optoelectronic applications [4–7].
Localized optical modes with infinite lifetimes—namely,
optical bound states in the continuum (BICs)—can exist in
the radiation continuum, and they have been described in
one-dimensional (1D) arrays of coupled waveguides [8–10]
and two-dimensional (2D) photonic crystals (PCs)
[3,11,12]. Despite the subwavelength size of each optical
resonator unit cell, however, BIC structures require infinite
periodicity to formally satisfy the BIC condition [3],
necessitating macroscopic quasi-infinite planar structures
for experimental realization of both the 1D array and 2D PC
examples. To reduce the physical dimensions of BIC
cavities, recent theoretical studies have investigated the
presence of BICs in 1D structures with lateral 2D confine-
ment, such as 1D arrays of dielectric spheres [13,14] or
disks [15,16], as well as supercavity modes in individual
dielectric nanorods [17,18]. Optical BICs in these theo-
retical examples are reported to exist because of symmetry
mismatch, accidental decoupling [13,15], or topological
protection [14]. Although a detuned quasi BIC has been
observed in the microwave regime from a chain of milli-
meter-sized ceramics [19], experimental demonstration of
BICs in the optical regime with laterally confined 1D
nanostructures has, to our knowledge, not been reported.
In this Letter, we describe the perfect trapping of light in

single Si nanowire (NW) geometric superlattices (GSLs)
through BICs above the light cone. A NW GSL has a
subwavelength diameter that is periodically modulated
along the NW axis [20–22], as shown in Fig. 1(a). The
optical confinement defined by the NW diameter gives rise
to well-defined, strong Mie resonances [23–25], allowing

NWs to strongly interact with external plane waves.
Moreover, a NW GSL exhibits an additional set of unique
photonic modes that are dependent on the pitch (p), outer
diameter (d), and inner diameter (e) of the GSL. As shown
herein, in a NW GSL under transverse-electric (TE)
polarized plane wave illumination, GSL guided resonances
[26] with different orbital angular momenta [13,15] can be
excited and couple to Mie resonances to produce sharp
Fano resonances. For a certain set of geometric parameters,
these GSL modes undergo complete destructive interfer-
ence, resulting in disappearance of the Fano features and
formation of optical BICs. Full wave simulations and
theoretical modeling using temporal coupled-mode theory
(TCMT) formulated to include Lorenz-Mie scattering
theory describe the origin of Fano resonances in different
angular channels and the appearance of optical BICs. We
discuss the geometric parameters for which a GSL satisfies
the BIC condition and verify theoretical predictions with
experimental measurements on single Si NW GSLs. This
work realizes 1D BICs for the first time in the optical
regime with true nanoscale lateral footprints, and we expect
this result to inspire further research into the design of
optical nanocavities.
As shown in Fig. 1(b), eigenmode analysis of NW GSL

structures reveals GSL modes with quality factors (Q
factors) that diverge to infinity within a range of p,
indicating that these GSL modes are optical bound states
with infinite lifetimes. The y component of the electro-
magnetic (EM) fields, Hy and Ey, of the two GSL
eigenmodes are given in Figs. 1(c) and 1(d) (see the
Supplemental Material [27] for full EM profiles). Each
GSL mode is assigned with angular numbers ofm ¼ 0 or 1
based on the azimuthal order of field maxima. In Fig. 1(c),

PHYSICAL REVIEW LETTERS 122, 187402 (2019)

0031-9007=19=122(18)=187402(6) 187402-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.122.187402&domain=pdf&date_stamp=2019-05-10
https://doi.org/10.1103/PhysRevLett.122.187402
https://doi.org/10.1103/PhysRevLett.122.187402
https://doi.org/10.1103/PhysRevLett.122.187402
https://doi.org/10.1103/PhysRevLett.122.187402


the m ¼ 0 GSL mode has a definitive TE polarization (i.e.,
Ey ¼ 0; not shown), and Hy exhibits an antiferromagnetic
ordering of magnetic dipoles. In contrast, the m ¼ 1 GSL
mode in Fig. 1(d) is hybrid polarized, so both Ey andHy are
nonzero and must be considered.
Bulgakov and Sadreev [13,15] have categorized BICs

arising in confined 1D geometries based on symmetry and
propagation constant, and static BICs may have either even
or odd symmetry under inversion. Odd modes are always
symmetry protected from the free-space radiation, whereas
even modes become decoupled from the radiation con-
tinuum only with certain geometric parameters. The m ¼ 0
mode in Fig. 1(c) exhibits even symmetry and belongs to
the latter case, and the BIC condition is achieved by tuning
p as shown by the orange trace in Fig. 1(b). The m ¼ 1

mode in Fig. 1(d), however, is odd in Ey but even in Hy.
Thus, it is symmetry protected against the decay into the
transverse-magnetic (TM) diffraction channel but reaches
the bound state only when it also decouples from the TE
continuum through the proper choice of p [Fig. 1(b), blue
trace]. Previously, we reported a coupled excitation of
guided modes in a NW GSL under excitation with a TM
polarized plane wave [22], and although those modes have
a similar symmetry to the m ¼ 1 GSL mode in Fig. 1(d),
Fig. 1(c) shows that the GSL modes are not limited to the
guided modes and can possess different symmetry types.
A scattering efficiency (Qsca) spectrum of a NW GSL

with p ¼ 400 nm is shown in Fig. 1(e) along with a
reference Qsca spectrum for a uniform NW. Because the
value of p places the structure outside the range needed for
a BIC, the Qsca spectrum of the GSL exhibits two Fano

resonances resulting from coupling between the GSL mode
and the background Mie resonance in the same angular
channel. In the Qsca heat map in Fig. 1(f), two sharp
branches of GSL modes denoted with angular numbers
m ¼ 0 and 1 redshift with increasing p, while the back-
ground Mie resonances, denoted TE0 and TE1, do not shift
because of the fixed diameters. The m ¼ 0 and 1 GSL
branches show vanishing points at p values of 237 and
262 nm, respectively, where the modes become completely
bound. These features are more clearly observed in the heat
map of confined energy (U=U0) in Fig. 1(g). While the p
values producing a BIC, marked with arrows in Figs. 1(f)
and 1(g), fall in the ranges of infinity Q factor for each
mode in Fig. 1(b), the range of p satisfying the BIC
condition is much narrower than the BIC ranges predicted
by eigenmode calculations because of the directional
illumination in plane wave simulations.
TCMT can be used to predict the optical coupling

behavior in a NW GSL and has been used to interpret
similar effects in photonic crystal slabs [26,28,29] and in
spherical nanoparticles [30–33]. Here, we employ TCMT
in the context of NWs by relating resonance parameters to
the exact solutions of Mie coefficients [23]. For the
scattering of a uniform, cylindrical NW, Hy under a TE
plane wave (Hx; Hz ¼ 0) is given by

Hy ¼
X∞

m¼−∞
½hþmHð2Þ

m ðkρÞ þ h−mH
ð1Þ
m ðkρÞ�eimϕ; ð1Þ

where hþm and h−m are amplitudes of the incoming and

outgoing waves, Hð1Þ
m and Hð2Þ

m are the mth-order Hankel
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FIG. 1. Optical BICs in a NWGSL. (a) Geometry of a NWGSL under TE-polarized plane wave illumination, where the length of each
segment is p=2. (b)Q factors of two GSL eigenmodes with varying p in a NW GSL with d ¼ 200 nm, e ¼ 170 nm. Modes are labeled
with angular numbersm ¼ 0 or m ¼ 1. (c) Hy pattern of m ¼ 0 GSL eigenmode. (d)Hy (upper) and Ey (lower) patterns of m ¼ 1 GSL
eigenmode. (e) Qsca spectrum of a NW GSL with d ¼ 200 nm, e ¼ 170 nm, and p ¼ 400 nm (solid black curve), and of a NW with
d ¼ 185 nm (gray dashed curve). (f),(g) Heat maps of (f) Qsca and (g) log(U=U0) for a NW GSL with varying p for fixed d ¼ 200 nm
and e ¼ 170 nm. Single spectra for a uniform NW with d ¼ 185 nm are presented on top of each heat map.
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functions, k is a wave vector, and ρ and φ are the polar
coordinates [32]. We define a reflection coefficient by
Rm ≡ h−m=hþm, and a single-mode TCMT expression is
given by

d
dt

AMie
m ¼ ð−iωMie

m − γMie
m ÞAMie

m þ κMie
m hþm ð2Þ

with h−m ¼ hþm þ dMie
m AMie

m , where AMie
m , ωMie

m , and γMie
m are

the amplitude, eigenfrequency, and radiative decay rate of
an mth-order Mie resonance, respectively, and κMie

m and
dMie
m are coupling coefficients to the incoming and outgoing

plane waves, respectively. Absorptive loss is neglected for
simplicity, and κMie

m ¼ dMie
m ¼ i

ffiffiffiffiffiffiffiffiffiffiffi
2γMie

m

p
by time-reversal

symmetry [29]. The total Qsca of a NW [32] is

Qsca ¼
2

kr

X∞
m¼−∞

���� 1 − Rm

2

����
2

; ð3Þ

where r is the NW radius. Noting the similarity of Eq. (3) to
the Mie scattering formula, we can relate the scattering
coefficient, jð1 − RmÞ=2j in Eq. (3), with an exact Mie
scattering coefficient [23] to yield

���� 1 − Rm

2

���� ¼
���� γMie

m

iðω − ωMie
m Þ þ γMie

m

���� ¼ jamj; ð4Þ

where am is an mth-order electric Mie coefficient respon-
sible for scattering of a NW under TE polarization
(analogously we can use the magnetic Mie coefficient,
bm, for TM polarization). Rearranging Eq. (4), as shown in
the Supplemental Material [27], we get

ωMie
m ¼ 2iamQMie

m ω

ð2iQMie
m þ 1Þam � 1

; ð5Þ

where QMie
m ¼ ωMie

m =2γMie
m is the Q factor of a Mie

resonance on the order of 5 to 10 that can easily be
estimated from numerical spectra. With ωMie

m and γMie
m as

functions of am, the modified TCMT can correctly produce
the asymmetric line shapes of NW Mie resonances.
For a NW GSL, the full TCMT equation becomes

d
dt

�
AMie
m

AGSL
m

�
¼

�
−i

�
ωMie
m ωc

m

ωc
m ωGSL

m

�
−
�
γMie
m 0

0 γGSLm

��

×

�
AMie
m

AGSL
m

�
þ
�
κMie
m

κGSLm

�
hþm; ð6Þ

and h−m ¼ hþm þ dMie
m AMie

m þ dGSLm AGSL
m , where AGSL

m , ωGSL
m ,

and γGSLm are the amplitude, eigenfrequency, and radiative
decay rate of an mth-order GSL mode, ωc

m is the coupling
strength between the Mie and GSL modes, and κGSLm and

dGSLm are coupling coefficients of GSL modes to the
incoming and outgoing plane waves, respectively.
We only consider the coupling of modes within the same

angular channel [34], and using Eq. (6), we can fit the
numerical Qsca spectra to reproduce all scattering features.
As an example, Figs. 2(a)–2(c) display Qsca for p ¼ 220,
260, and 320 nm at a fixed d ¼ 200 nm and e ¼ 170 nm,
where totalQsca obtained from TCMT (circles) are overlaid
with numerical simulations (red curves). The case of
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FIG. 2. Qsca from TCMT and from full wave simulations. (a)–
(c) Total Qsca calculated by modified TCMT (blue circles)
overlaid with numerical calculations (red curve) for a NW
GSL with (a) d ¼ 200 nm, e ¼ 170 nm, and p ¼ 220 nm;
(b) p ¼ 260 nm; or (c) p ¼ 320 nm. Insets show magnified
views near Fano resonances. Peaks marked with asterisks result
from higher-order GSL modes not included in the TCMT.
(d) Total Qsca (dashed curve) from (c) decomposed into each
angular channel (circles).
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p ¼ 260 nm satisfies the BIC condition, but shorter and
longer p do not. Fano resonances appear for the shorter and
longer p cases because the GSL modes couple with the Mie
resonance (ωc

m ≠ 0). At p ¼ 260 nm, however, the m ¼ 1
Fano peak almost completely vanishes at 701 nm
[Fig. 2(b)]. The analytical Qsca in Fig. 2(b) is obtained
with both ωc

1 and γGSL1 ≈ 0, implying the emergence of a
perfectly bound optical state. Because the m ¼ 0 GSL
mode becomes bound at a slightly different p than m ¼ 1
[cf. Figure 1(b)], it is still observed at ∼618 nm but with a
vanishing linewidth of ∼0.2 nm. Figure 2(d) shows the
total Qsca (dashed curve) and separate Qsca spectra from
each angular channel calculated using Eq. (6) for the p ¼
320 nm NW GSL (circles). The two Fano resonances at
∼661 and ∼765 nm are separately observed in the m ¼ 0
and 1 angular channels, respectively, and the long tails of
the asymmetric Mie resonances permit Fano resonances to
appear far away from the Mie maxima of the same channel.
The appearance of a BIC depends sensitively on illumi-

nation and structural geometry. For instance, BICs appear
only at a Γ point because the symmetry of the BIC is
distorted with a nonzero axial wave vector. As an example,
Fig. 3(a) shows the Q factor of the m ¼ 1 BIC mode of a
NW GSL, calculated from the circled area in the inset band
diagram, as a function of kp=2π starting at Γ. The Q factor
decreases from infinity as the wave vector deviates from Γ
because the loss of illumination symmetry allows the mode
to couple to the Mie resonance. Moreover, even at Γ, the
range of p that produces a BIC (or an infinite Q factor)
changes with different values of e at a fixed d, and there is a
substantial widening of the p range producing a BIC as e
approaches d, as shown in the eigenmode calculations in
Fig. 3(b). When d and e are similar, the magnitude and
mode volume of dipoles within each diameter segment are
similar in magnitude (see Fig. S1 in the Supplemental
Material [27]), so a broad set of p can produce the total
destructive interference needed to form a BIC. However, as
e deviates from d, the p range supporting a BIC narrows

and eventually disappears (frequencies of BICs formed at
different p and e are summarized in Fig. S2 in the
Supplemental Material [27]).
We experimentally verified the scattering characteris-

tics of NW GSLs fabricated by the encoded nanowire
growth and appearance through vapor-liquid-solid growth
and etching (ENGRAVE) technique [20,21]. A d close to
200 nm was chosen to allow direct comparison with the
scattering heat map in Fig. 1(f), and p was varied from 200
to 400 nm with 50 nm increments to investigate the spectral
shift and disappearance of the Fano resonances. To min-
imize variation in d and e, five 10 μm-long GSL sections
with different p were encoded simultaneously in a single
NWwith 10 μm uniform segments separating each GSL, as
shown by the scanning electron microscope (SEM) images
in Fig. 4(a). Polarization-resolved transmissive single-NW
extinction was measured in the visible range using a
homebuilt laser microscope [22]. Simulated Qsca corre-
sponding to measured geometries and measured extinction
spectra are shown in Figs. 4(b) and 4(c), respectively. Qsca
was simulated with a Gaussian beam (full width at half
maximum of 1.5 μm) in the presence of material absorption
to properly reflect the experiment.
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5). (b) Simulated Qsca (spectra offset by 1) and (c) measured
extinction (spectra offset by 5%) of GSLs. Red traces in both
graphs represent spectra of a GSL at the BIC condition. Arrows
and asterisks indicate the m ¼ 0 and 1 Fano resonances,
respectively.
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For simulated spectra of a GSL with p ¼ 400 nm
[uppermost in Fig. 4(b)], two Fano resonances for m ¼
0 and m ¼ 1 GSL modes are observed at ∼645 and
∼762 nm, as marked by the arrow and asterisk, respec-
tively. Compared to the subnanometer linewidth shown in
Fig. 1(e), a substantial broadening of the Fano line shape is
observed because of absorptive loss and the finite beam
[35]. An additional small peak at ∼676 nm comes from the
use of a finite beam [22]. As p decreases, the m ¼ 0 peak
gradually merges into the broad Mie resonance peak
centered at ∼600 nm, and the m ¼ 1 peak (red asterisks)
blueshifts and progressively decreases in magnitude.
At p ¼ 230 nm (red curve), the Fano peak vanishes
because the mode becomes decoupled from the TE and
TM radiation continua. The same pattern is observed in the
experimentally measured extinction in Fig. 4(c). The
extinction of GSL 5 (uppermost) shows the m ¼ 1 Fano
resonance at ∼785 nm (red asterisk). The m ¼ 1 Fano
resonance blueshifts with decreasing p, and it eventually
vanishes for GSL 1 (red circles), corresponding to the
formation of a BIC. As a result, the extinction of GSL 1
looks identical to the typical extinction spectrum of a
uniform NW, demonstrating the inaccessibility of the
trapped modes by far-field illumination. Inclusion of
absorption in eigenmode calculations shows a significant
reduction of the Q factors to ∼150, and experimental Q
factors, obtained from fitting the spectra, yield values of 95
to 180 that qualitatively agree with the calculations (see
Fig. S3 in the Supplemental Material [27]).
In conclusion, we have demonstrated that NW GSLs

support unique photonic modes that can be completely
bound under a certain set of geometric parameters, and this
Letter represents the first experimental demonstration of a
BIC in a laterally confined 1D geometry in the optical
regime. The bottom-up growth of Si NW GSLs through the
ENGRAVE process offers several technological advan-
tages, such as mechanical robustness from single-crystal
materials, ability to electrogenerate photons inside the
cavity through doping [36], and ease of device integration
through templated growth [37]. Because the subwavelength
lateral dimensions provide a true nanoscale footprint, these
findings could enable the design of compact high-Q
photonic devices such as single-NW photodetectors, lasers,
sensors, and photonic circuits.
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