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We introduce an auxiliary quantum master equation dual fermion method and argue that it presents a
convenient way to describe steady states of correlated impurity models. The scheme yields an expansion
around a reference that is much closer to the true nonequilibrium state than that in the original dual fermion
formulation. In steady-state situations, the scheme is numerically inexpensive and avoids time propagation.
The Anderson impurity model is used to test the approach against numerically exact benchmarks.
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Since its theoretical conception [1] and the first exper-
imental evidence of measurements on single-molecule
junctions [2], molecular electronics has challenged theory
for a proper description of response in open molecular
systems far form equilibrium. Theoretical treatments are
often based on a perturbative expansion in a small
parameter, such as the strength of intramolecular inter-
actions or molecule-contact couplings. The former can be
conveniently treated within the standard nonequilibrium
Green function (NEGF) technique [3,4], while the latter are
handled at the nonequilibrium molecular limit [5] by many-
body flavors of Green function (GF) methodology includ-
ing pseudoparticles (PP) [6,7] or Hubbard NEGF [8,9]
techniques. These two limits account for the majority of
experimental measurements. For example, inelastic elec-
tron tunneling spectroscopy [10] is usually treated within
NEGF [11,12], while Coulomb blockade [13], single
molecule strong coupling in plasmonic nanocavities [14],
and coherent electron-nuclear dynamics [15] require many-
body local analysis [16,17].
In the absence of a small parameter or when molecule-

lead correlations cannot be adequately described within
perturbation theory, theoretical treatment is more involved.
For example, this is the situation one encounters in
describing Kondo physics in molecular junctions
[18–24]. Theoretical methods for strongly correlated sys-
tems include dynamical mean field theory (DMFT) [7,25],
density matrix renormalization group (DMRG) technique
[26,27], scattering states-numerical renormalization group
approach [28,29], flow equations [30,31], multilayer multi-
configuration time-dependent Hartree [32,33], continuous
time quantum Monte Carlo (CT-QMC) simulations
[34–36], and others. These methods are numerically
demanding and are mostly limited to simple models.
DMFT, which assumes only that correlations are local,

is more general and is extensively used in simulations of
strongly correlated materials (extended systems).
One way to account for nonlocal correlations in extended

systems is the dual-fermion (DF) approach [37]. We note in
passing that, besides the DF, many other studies extending
DMFT beyond local correlations are available in the
literature. For a comprehensive review, see Ref. [38]and
references therein. Originally, the DF method was formu-
lated for equilibrium systems [39,40]. A nonequilibrium
version of the method (DF-inspired superperturbation
theory) was later proposed in Ref. [41] as a way to solve
impurity transport problems. An attractive feature of the
latter formulation is its applicability in the absence of a
small parameter. At the heart of the approach is a reference
system, which includes the molecule and a finite number of
states representing leads. Such a finite problem can be
solved exactly, though the system-lead couplings are then
only an approximation of the original problem. DF intro-
duces an auxiliary zero order Hamiltonian around which
standard diagrammatics can be formulated. The resulting
expansion accounts for the difference between the true
system-lead hybridization and its approximation within the
reference system (see Ref. [41]).
Where the steady state is of interest, the nonequilibrium

DF approach of Ref. [41] requires significant numerical
effort. Because only a few sites represent infinite baths in
the reference system, the hybridization function differs
significantly from the true one. Furthermore, the finite
reference system necessarily yields a periodic solution,
such that reaching the steady state from the initially
decoupled system and bath requires long time propagation.
We propose to utilize the solution of an auxiliary

quantum master equation (QME) as a reference system
for the DF approach in steady state [compare Figs. 1(b)
and 1(c)]. The auxiliary QME yields a description of the
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hybridization and nonequilibrium state of the system which
is much closer to the true solution than any finite reference
system. Furthermore, time propagation is completely
avoided. We note that the auxiliary QME has previously
been used as a DMFT impurity solver [42,43]. Here, we use
it as a starting point for a more accurate DF impurity solver.
Nonequilibrium DF.—In the nonequilibrium DF

approach (for details see Ref. [41] and Supplemental
Material [44]), one considers reduced dynamics of an open
system with interactions confined to the molecular sub-
space and the effect of the leads entering via corresponding
self-energies. The effective action on the Keldysh contour
is [45]

S½d�; d� ¼
X
1;2

d�1½G−1
0 − ΣB�12d2 þ Sint½d�; d�; ð1Þ

where i ¼ ðmi; τiÞ (i ¼ 1, 2) is the index incorporating
molecular orbital mi and the Keldysh contour variable τi,
and the summation indicates sum over molecular orbitals
and integral over the contour variables. d�i ¼ d�mi

ðτiÞ
[di ¼ dmi

ðτiÞ] is the Grassmann variable corresponding
to the creation (annihilation) operator d̂†mi

ðτiÞ [d̂mi
ðτiÞ] of

an electron in orbitalmi in the Heisenberg picture [46].G−1
0

is the inverse free GF [47]

½G−1
0 �12 ≡ δðτ1; τ2Þ½i∂⃗τ1δm1;m2

−H0
m1m2

ðτ1Þ� − Σirr
12

¼ ½−i∂⃖τ2δm1;m2
−H0

m1m2
ðτ2Þ�δðτ1; τ2Þ − Σirr

12; ð2Þ
and ΣBðτ1; τ2Þ is the self-energy due to coupling to
contacts [48]

ΣB
m1m2

ðτ1; τ2Þ ¼
X
k∈B

Vm1kgkðτ1; τ2ÞVkm2
: ð3Þ

In Eqs. (2) and (3), H0
m1m2

ðτÞ is the noninteracting part of
the molecular Hamiltonian, Σirr

m1m2
ðτ1; τ2Þ ∼ δðτ1; τ2Þ is the

irregular self-energy, Vmk is the matrix element for electron
transfer between molecular orbital m and contact state k,
and gkðτ1; τ2Þ≡ −ihTcĉkðτ1Þĉ†kðτ2Þi is the GF of free
electron in state k of the contacts. All intramolecular
interactions are within the (unspecified) contribution to
the action, Sint½d�; d�.
The DF approach is based on two important steps. First,

one introduces an exactly solvable reference system with
baths represented by a finite number of states. Its known
action S̃½d�; d� has the same general form (1) with true self-
energy ΣB substituted by its approximate representation Σ̃B.
The desired action S can then be written as

S½d�; d� ¼ S̃½d�; d� þ
X
1;2

d�1½Σ̃B − ΣB�12d2: ð4Þ

Second, direct application of standard diagrammatic
expansion around the interacting reference system is not

possible, because the Wick’s theorem does not apply [49].
To resolve this, an artificial particle (dual fermion) is
introduced which is used to unravel the term via the
Hubbard-Stratonovich transformation [50]. Integrating
out molecular fermions (d and d�) and comparing the
second order cumulant expansion of the resulting expres-
sion with the general form of action for dual fermions,
SDF½f�; f� ¼ P

1;2f
�
1½ðGDF

0 Þ−1 − ΣDF�12f2, one gets

ðGDF
0 Þ−112 ¼ −g−112 −

X
3;4

g−113 ½Σ̃B − ΣB�−134 g−142 ; ð5Þ

ΣDF
12 ¼

X
3;4

Γ13;24½GDF
0 �43: ð6Þ

Here, g12 and Γ13;24 are the single-particle GF and the two-
particle vertex of the reference system, respectively [4].
With ðGDFÞ ¼ ½ðGDF

0 Þ−1 − ΣDF�−1 known, the single-
particle GF of the molecule is obtained from

G ¼ ðδΣBÞ−1 þ ½g δΣB�−1GDF½δΣBg�−1; ð7Þ
where δΣB ≡ Σ̃B − ΣB.
Auxiliary QME.—The choice of reference system is

arbitrary, but its ability to describe the physics reflects
on the accuracy of the associated DF approach. In this
sense, a finite reference system [see Fig. 1(b)] may not be
optimal: its inability to represent dissipation and inevitably
periodic solution makes reaching the steady state difficult.
We propose using a reference with infinite leads, with the
majority of lead states treated implicitly (integrated out)
and a finite number included in an extended molecule-lead
system [see Fig. 1(c)]. Effectively, this complements the
choice of Ref. [41] with actual baths. We use a Markovian
QME,

dρSðtÞ
dt

¼ −iLρSðtÞ; ð8Þ

to simulate the extended system. Here, ρSðtÞ is the extended
system density operator and L is the Liouvillian. Our

U

L R

U=0 U U=0

U=0 U=0 U=0 U U=0 U=0 U=0

L R

(a) (b)

(c)

FIG. 1. Nonequilibrium junction model. Shown are (a) Ander-
son impurity model, (b) reference system within original DF
approach [41], and (c) reference system within auxiliary QME-
DF approach.
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approach maintains all the advantages of Ref. [41] adding
infinite baths, which results in a substantially more accurate
and less numerically expensive computational scheme.
Below, we focus on the steady state, where correlation
functions depend on time differences, and work in the
energy representation.
The nonequilibrium DF approach, Eqs. (5) and (6),

requires single- and two-particle Green functions of the
reference system as an input. To provide these, we utilize
the quantum regression relation [51]

hTcÂðτ1ÞB̂ðτ2Þ;…; ẐðτnÞi
¼ Tr½OnUðtn; tn−1Þ;…;O2Uðt2; t1ÞO1Uðt1; 0ÞρSð0Þ�:

ð9Þ
Here, ρSð0Þ is the steady-state density matrix of
the extended system, Uðti; ti−1Þ is the Liouville space
evolution operator, and times ti are ordered so that
tn > tn−1 >; � � � ; > t2 > t1 > 0. Oi is the Liouville space
superoperator corresponding to one of operators Â;…; Ẑ
whose time is ith in the ordering. It acts from the left (right)
for the operator on the forward (backward) branch of the
contour. The steady-state density matrix is found as a right
eigenvector jR0 ≫ corresponding to the Liouvillian eigen-
value λ0 ¼ 0. Using spectral decomposition of the
Liouvillian, the evolution operator can be presented in
its eigenbasis as

Uðti; ti−1Þ ¼
X
γ

jRγ ≫ e−iλγðti−ti−1Þ ≪ Lγj: ð10Þ

For evaluation of single- and two-particle GFs, besides the
L of Eq. (8), we will also need Liouvillians Lð�1Þ and
Lð�2Þ. These are evolution operator generators for Liouville
space vectors jS1S2 ≫ with different number NS of
electrons in states jS1i and jS2i. For example, for Lðþ1Þ,
NS1 ¼ NS2 þ 1 [52].
Using (10) in (9) yields expressions for the GFs of the

reference system (see [44] for details). Once single- and
two-particle GFs of the reference system are known, the
vertex required in (6) is given by

Γ13;24 ¼
X
10 ;20
30 ;40

g−1
110g

−1
330 ½gð2Þ1030;2040 − g1020g3040 þ g1040g3020 �g−1202g−1404:

ð11Þ
Below, we consider extended systems of size small enough
that exact diagonalization can be employed. For larger
systems, more advanced methods (e.g., matrix product
states [54]) may be used.
Model.—We apply the QME-DF method to the

Anderson impurity model: the junction is constructed from
the quantum dot coupled to two paramagnetic leads each at
its own equilibrium [see Fig. 1(a)]. The Hamiltonian is

Ĥ ¼ ĤM þ
X

K¼L;R

ðĤK þ V̂MKÞ; ð12Þ

where ĤM ¼ P
σ¼↑;↓ϵ0d̂

†
σd̂σ þ Un̂↑n̂↓ and ĤK ¼P

k∈K
P

σ¼↑;↓ ϵkĉ
†
kσ ĉkσ are Hamiltonians of the quantum

dot and contact K, and V̂MK ¼ P
k∈K

P
σ¼↑;↓ðVkd̂

†
σ ĉkσ þ

H:c:Þ describes electron transfer between the dot and
contact. The d̂†σ (d̂σ) and ĉ†kσ (ĉkσ) creates (annihilates)
electron of spin σ on the dot and in state k of the contacts,
respectively. U is the Coulomb repulsion and n̂σ ¼ d̂†σd̂σ .
Using Eq. (7), we calculate the GF

Gσðτ1; τ2Þ ¼ −ihTcd̂σðτ1Þd̂†σðτ2Þi; ð13Þ
and use it to evaluate the level population nσ , spectral
function AσðEÞ, and current IL ¼ −IR [55] in steady state

nσ ¼ −i
Z

dE
2π

G<
σ ðEÞ; AσðEÞ ¼ −

1

π
ImGr

σðEÞ;

IK ¼
X
σ

Z
dE
2π

½Σ<
KðEÞG>

σ ðEÞ − Σ>
KðEÞG<

σ ðEÞ�: ð14Þ

Here, <, >, and r are, respectively, lesser, greater, and
retarded projections of the GF. Σ≷

KðEÞ is the greater or lesser
projection of the self-energy due to lead K ∈ fL;Rg.
Following Ref. [56], we model the leads as semi-infinite
tight-binding chains with on-site energies ϵK and hopping
parameter tK (K ¼ L, R); the electron hopping between the
quantum dot and chain is tMK .
Numerical results.—We compare theQME-DF approach

to the Anderson impurity model with the original
nonequilibrium DF scheme and with numerically exact
time-dependent density matrix renormalization group
(TDDMRG) and CT-QMC calculations. The former were
performed using algorithms and libraries for physics
simulations-matrix product states (ALPS-MPS) [57,58],
while the latter utilize the Inchworm algorithm introduced
in Ref. [34]. The units are set by the maximum total escape
rate, Γ0 ¼ 2t2ML=tL þ 2t2MR=tR: in particular, we employ
units of energy, E0 ¼ Γ0, time t0 ¼ ℏ=E0, voltage
V0 ¼ E0=jej, and current I0 ¼ jejE0=ℏ. We show two
flavors of the QME-DF results: zero order, where one
neglects self-energy ΣDF, and first order, where the self-
energy is evaluated using Eq. (6).
Unless stated otherwise, the parameters are as follows:

U¼5E0, ϵ0¼−U=2, tML¼tMR¼0.79E0 and tL¼tR¼
2.5E0. The positions of the on-site energies in the leads,
ϵK, are given by the corresponding chemical potentials
μK . The Fermi energy EF ¼ 0 is taken as the origin,
and bias is assumed to be applied symmetrically such
that μL=R ¼ EF � jejVsd=2. The temperature is zero. The
QME-DF simulations are performed on an energy grid
spanning range from −12.5E0 to 12.5E0 with step
0.0125E0.
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Figure 2(a) showsQME-DF level populations n↑ ¼ n↓ ≡
n0 under a bias Vsd ¼ 2.5V0, at several level positions ϵ0,
evaluated directly in the steady state. In contrast, the inset of
Fig. 2(a) displays the corresponding time propagation of the
population following a molecule-lead coupling quench
simulation of Ref. [41], illustrating the difficulty of reaching
steady state within the original nonequilibrium DF
approach. Figure 2(b) shows the current at identical param-
eters. In both panels of Fig. 2, we compare the zero (DF0,
dashed line) with the first (DF, solid line) order QME-DF
approach, the auxiliary QME (QME, dotted line) and
numerically exact TDDMRG results at t ¼ 8t0. The first
order QME-DF approach is quite accurate in predicting both
level populations and currents,while being substantially less
expensive numerically than the original DF formulation and
having the added advantage of direct access to the
steady state.
In Fig. 3, we consider current-voltage characteristics in

the particle-hole symmetric case, within the auxiliary QME
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FIG. 2. Steady-state transport characteristics vs gate voltage at
fixed bias. Shown are (a) population and (b) current vs level
position, as calculated from auxiliary QME (dotted line), and zero-
(dashed line) and first- (solid line) order QME-DF approaches.
Circles (red) represent results of numerically exact TDDMRG
simulations. The inset in panel (a) shows the results of the original
nonequilibrium DF simulation, where, at t ¼ 0, coupling between
system and contacts is switched on for several level positions.
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FIG. 3. Current voltage characteristics. We show the auxiliary
QME (dotted line), zero (dashed line), and first (solid line) order
QME-DF approaches. For comparison, circles and squares
represent, respectively, TDDMRG and CT-QMC results.
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FIG. 4. Spectral function ofAnderson impuritymodel. Shown are
results of QME-DF simulations for (a) the spectral function of the
unbiased (Vsd ¼ 0, solid line) and biased junction (Vd=V0 ¼ 2.5,
dotted line), and (b)The spectral functionvs energy and applied bias.
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(dotted line), the zero (dashed line), and first (solid line)
order QME-DF. The latter is quite close to numerically
exact TDDMRG (circles) and CT-QMC calculations
(squares). Interestingly, the first order QME-DF calculation
with three auxiliary sites yields results similar to a much
more expensive six-site QME simulation (compare with
Fig. 3 of Ref. [43]).
Finally, we consider spectral function: Figure 4(a) shows

results of equilibrium (Vsd ¼ 0, solid line) and nonequili-
brium (Vsd ¼ 2.5V0, dotted line) simulations; Fig. 4(b)
shows the spectral function varying with bias. At low biases
equilibrium Kondo peak splits and follows corresponding
chemical potentials, while higher biases destroy the corre-
lation. Similar results were obtained in Refs. [28,59–62].
Note that results in Fig. 4 are only a qualitative represen-
tation of true Kondo physics, but equilibrium DF studies,
e.g., Ref. [39], have shown that accurate results in the
correlated regime can be obtained efficiently by accounting
for higher order diagrams.
Conclusion.—The nonequilibrium dual fermion

approach introduced originally in Ref. [41] is a promising
method for simulating strongly correlated open systems.
Contrary to usual diagrammatic expansions in small inter-
action (e.g., intrasystem interaction in NEGF or system-
bath couplings in PP- or Hubbard NEGF), the method can
treat systems with no small parameter by expanding around
an exactly solvable reference system. The choice of a finite
reference system in the original DF formulation cannot
properly describe bath induced dissipation and results in
periodic dynamics, which, together with the necessity to
consider time propagation starting from a decoupled initial
state, complicates reaching steady state.
We proposed complementing the finite reference system

with infinite Markovian baths and use an auxiliary quantum
master equation to solve the reference problem. We argued
that the approach is advantageous in treating the steady
states because it yields a reference system which is much
closer to the true nonequilibrium state than that in the
original formulation. Also, an infinite size of the modified
reference system results in a more accurate description of
bath induced dissipation. Finally, the approach allows us to
avoid long time propagations necessary for reaching the
steady-state solution in the original formulation.
For the Anderson impurity model, we tested our

approach by comparing QME-DF simulations with numeri-
cally exact TDDMRG and CT-QMC results. This showed
that the new scheme is both accurate and inexpensive.
Further development of the method and its application to
realistic systems is a goal for future research.
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