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We develop a theory of Coulomb drag due to momentum transfer between graphene layers in a strong
magnetic field. The theory is intended to apply in systems with disorder that is weak compared to Landau
level separation, so that Landau level mixing is weak but strong compared to correlation energies within a
single Landau level, so that fractional quantum Hall physics is not relevant. We find that, in contrast to the
zero-field limit, the longitudinal magneto-Coulomb drag is finite and, in fact, attains a maximum at the
simultaneous charge neutrality point (CNP) of both layers. Our theory also predicts a sizable Hall drag
resistivity at densities away from the CNP.
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Introduction.—Progress in preparing high-quality sam-
ples of graphene [1,2] and other atomically thin two-
dimensional (2D) systems has made it possible to study
interlayer interaction effects in Coulomb-coupled electron
gas layers separated by only a few nanometers. The
archetypical Coulomb-coupling phenomenon is drag resis-
tance due to Coulomb interactions between layers [3].
When an external electric field drives a current through one
of the layers, there is a nonzero rate of net momentum
transfer from electrons in the drive layer to electrons in the
drag layer, resulting in a drag voltage in an open-circuit
geometry. This intriguing effect has been extensively
studied theoretically and experimentally in conventional
2D electron gas (2DEG) systems. Atomically thin Dirac
electron systems like graphene present new challenges to
theories of Coulomb drag, because stronger coupling can
be achieved by placing the two layers closer together [4,5].
The weak coupling regime of Coulomb drag in a double-

layer graphene system has been explored theoretically
[6–14] and realized experimentally [15]. Striking differences
compared with the zero-field case are observed [16–19]
when closely separated (≳1 nm) double-layer graphene or
bilayer graphene structures are placed in weak perpendicular
magnetic fields. The observations of a finite longitudinal
drag resistivity at the simultaneous charge neutrality point
(CNP) of both layers and of a large Hall drag away from this
density have been particularly intriguing. Very recently,
strong-field Coulomb drag in the quantum Hall regime
has been measured in double layers of graphene [22] and
bilayer graphene [20,21].
In this Letter, we develop a theory of Coulomb drag

due to momentum exchange between 2D graphene sheets
in the presence of strong magnetic fields. We consider
the case where fields are strong enough for weakly

disorder-broadened Landau levels to be well resolved.
Our theory does not apply when an exciton condensate
is present or in the weak-disorder, low-temperature regime
at which the fractional quantum Hall effect and other
phenomena associated with strong electronic correlations
appear. We find that the drag resistivity behaves very
differently in the strong magnetic field and zero magnetic
field limits. As we will show, a finite drag resistivity is
present at the simultaneous CNP of both layers at strong
fields, whereas drag vanishes at that point in the B ¼ 0 case
[6]. Away from the CNP, we find a sizable Hall drag
resistivity. These two main findings from our theory
corroborate recent experimental observations [22].
Theory.—The eigenstates of the graphene free-particle

Hamiltonian consist of a special Dirac point Landau level
(LL) labeled by ðn ¼ 0; XÞ, and other LLs labeled by
ðn; s; XÞ, where n ¼ 1; 2;… is a LL index, s ¼ � is a band
label (conduction band þ and valence band −), and X is a
Landau gauge guiding center label. The LL energies are
sεn ¼ sℏωc

ffiffiffi
n

p
, where ωc ¼

ffiffiffi
2

p
v=lB with v the Dirac

velocity (v ¼ 106 ms−1 in graphene) and lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ejBjp

the magnetic length [23]. Our theory is applicable in the
regime kBT, Δε ≫ ℏ=τ, where Δε is the typical LL
separation near the Fermi level and ℏ=τ the disorder
broadening. The central quantity in the Coulomb drag
problem [24,25] is the nonlinear susceptibility Γðq;ω;BÞ
[see Fig. 1(a)]. We now derive an expression for this
quantity that is valid for graphene in a magnetic field. The
Green’s function in Fig. 1(a) is

Gn;s;XðεÞ ¼
jn; s; Xihn; s; Xj
ε − εs;n þ i=2τ

; ð1Þ
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where jn; s; Xi is an eigenstate [26]. The three vertices in
the nonlinear susceptibility diagram [Fig. 1(a)] contain
matrix elements of the current and charge density operators
between different LLwave functions. In a continuummodel,
the eigenstates are spinors with components on both honey-
comb sublattices. The current and charge density matrix
elements are

hn2; s2; X2jjxjn3; s3; X3i ¼ evδX2;X3
N n2N n3

× ½s2δn2−1;n3 þ s3δn2;n3−1�; ð2Þ

hn1;s1;X1jeiq·rjn2;s2;X2i
¼ δX1;X2þqyl2

B
eiqxðX1þX2Þ=2N n1N n2

× ½Fn1;n2ðqÞþ s1s2Fn1−1;n2−1ðqÞ�; ð3Þ

whereN n ¼ δn;0 þ ð1 − δn;0Þ=
ffiffiffi
2

p
is a normalization factor,

and we have defined

Fn1;n2ðqÞ ¼
ffiffiffiffiffiffiffi
n<!
n>!

s
e−q

2l2B=4Ln>−n<
n<

�
q2l2

B

2

��
iq̃lBffiffiffi

2
p

�
n>−n<

:

ð4Þ

In Eq. (3), q ¼ jqj, q̃ ¼ qx þ iqy, n> ¼ maxðn1; n2Þ, n< ¼
minðn1; n2Þ, and Lα

n is the generalized Laguerre polynomial
of degree n. Evaluating Fig. 1(a) using the standard
Matsubara Feynman diagram technique and Eqs. (1)–(4),
we obtain the following compact expression for the nonlinear
susceptibility:

Γðq;ω;BÞ ¼ 2l2
Bq × B̂ImΠðq;ω; BÞ; ð5Þ

where B̂ is the direction of the magnetic field,

Πðq;ω; BÞ ¼ −
g

2πl2
B

X∞
n1;n2¼0

X
s1;s2¼�

×
fs1;n1 − fs2;n2

ωþ s1εn1 − s2εn2 þ i=2τ

× F s1;s2ðqlB; n1; n2Þ; ð6Þ

where g ¼ 4 accounts for the spin and valley degeneracy
and fs;n is the Fermi occupation factor for the ðn; s; XÞ LL.
The form factor F in Eq. (6) is

F s1;s2ðx;n1;n2Þ¼
e−x

2=2

4

�
x2

2

�
n>−n<

×

�
s1

ffiffiffiffiffiffiffi
n<!
n>!

s
Ln>−n<
n<

�
x2

2

�

þs2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn<−1Þ!
ðn>−1Þ!

s
Ln>−n<
n<−1

�
x2

2

�
θðn<−1Þ

�2
;

ð7Þ

where θðxÞ ¼ 1 for x ≥ 0 and 0 otherwise. The quantity Π
in Eq. (6) is the polarization function of Dirac fermions in a
perpendicular quantizing magnetic field [27]. The nonlinear
susceptibility Γ is therefore directly proportional to the
imaginary part of the polarization function, as in the conven-
tional 2DEGcasewith a single nonchiralparabolic band [28].
This finding might seem surprising, since the Γðq;ωÞ ∝

ImΠðq;ωÞ property of a conventional 2DEG [24,25] does
not apply to the nonlinear susceptibility of graphene [7] in
the absence of a magnetic field. This difference can be
explained by noting that, while the energy dispersions of
the conventional 2DEG and graphene are different at
B ¼ 0, both have dispersionless Landau levels at strong
B. We therefore conjecture that, in a strong magnetic field
when disorder does not appreciably mix Landau levels, the
simple relationship Γ ∝ ImΠðq;ωÞ is a universal feature
of all clean two-dimensional electron systems, regardless
of their energy dispersions. In such a case, the nonlinear
susceptibility is, like the polarization function, dominated
by inelastic inter-LL transitions of electrons from one
localized LL orbit to another localized LL orbit.
Another remarkable distinction of the strong magnetic

field is brought to light by examining the drag resistivity at
the CNP. The nonlinear susceptibility of graphene in the
absence of a magnetic field was first evaluated in Ref. [6].
Making use of the electron-hole symmetry of the bands and
time-reversal invariance, it is straightforward to show that,
atB ¼ 0,Γðq;ωÞ is an odd function of the chemical potential
μ. When the chemical potential is at the Dirac point, Γ ¼ 0,
because the two diagrams comprising Fig. 1(a) exactly
cancel. Drag therefore vanishes when either layer is charge
neutral. At high temperatures, this behavior has indeed been
observed experimentally [15,16]. In the presence of a strong

+=

(a)

(b)

FIG. 1. (a) Diagrams for the nonlinear susceptibility Γ. The
black (dark) wavy line denotes a vector potential coupled to a
current vertex, and the light (green) wavy lines denote scalar
potentials coupled to charge vertices. (b) Diagram for the drag
transconductivity. Interlayer screened Coulomb interactions
[green (light) wave lines] representing interlayer Coulomb
interactions Uðq;ωÞ link the two triangle nonlinear susceptibility
diagrams.
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magnetic field, on the other hand, the nonlinear susceptibility
Eq. (5) is an even function of μ, as we prove below.
First, we note that electron-hole symmetry is preserved

for the s ¼ �LLs so that fs;nðμÞ ¼ 1 − f−s;nð−μÞ and that
the form factor in Eq. (7) is invariant under s1 → −s1 and
s2 → −s2. Next, we can interchange the labels n1 ↔ n2,
s1 ↔ s2 to conclude that Πðq;ω; BÞ is invariant under
μ → −μ. It then follows from Eq. (5) that Γðq;ω;B; μÞ ¼
−Γð−q;ω;B;−μÞ ¼ Γðq;ω;B;−μÞ. The final identity
requires the observation that the form factors in Eq. (7)
depend on q ¼ jqj only. Therefore, the contributions from
the two diagrams in Fig. 1(a) do not cancel at μ ¼ 0 as they
do in the absence of broken time-reversal symmetry. Drag
can be finite even when one of the layers is charge neutral.
The interlayer transconductivity diagrams [24,25] yield

the drag conductivity [Fig. 1(b)]

σDαβ ¼
e2

16πℏkBT

X
q

Z þ∞

−∞

dω
sinh2ðω=2kBTÞ

× ΓL
α ðq;ω;BÞΓR

β ðq;ω;−BÞjUðq;ω; BÞj2; ð8Þ

where the superscripts “L” and “R” (left and right,
respectively) label the two layers and Uðq;ω; BÞ is the
screened interlayer Coulomb interaction in the random
phase approximation [29]. The Coulomb interaction
strength in graphene is characterized by the dimensionless
coupling constant αG ¼ e2=ðϵℏvÞ, where ϵ is an effective
dielectric constant which we view as a parameter that can
be altered by changing the sheet’s dielectric environment
[30]. The quantity measured in most Coulomb drag experi-
ments is the drag resistivity, which can be obtained by
inverting the four-component (two layers each with two

directions) conductivity tensor σ
↔
of the bilayer, ρ

↔ ¼ ðσ↔Þ−1.
The conductivity tensor becomes diagonal in Cartesian
labels when x̂ and ŷ components are replaced by left- and
right-handed (x̂� iŷ) components. It simplifies further in
the special case of identical left and right sheets, since
parallel flow and counterflow are then decoupled.
For the general case, we introduce the definitions

Sxx ¼ ðσDxxÞ2 − σLxxσ
R
xx þ σLxyσ

R
xy; ð9Þ

Sxy ¼ σLxyσ
R
xx þ σLxxσ

R
xy; ð10Þ

where σL;Rxx and σL;Rxy are the longitudinal and Hall con-
ductivities, respectively, in the individual layers. Because
the Hall drag conductivity σDxy vanishes due to the odd
momentum dependence of Γ ∝ q × B̂ in Eq. (5), the
general drag resistivity tensor expression simplifies to

ρDαβ ¼ σDxxSαβ=ðS2
xx þ S2

xyÞ; ð11Þ

where α; β ¼ x or y. In 2DEG systems, the Hall drag
resistivity is negligible for ωcτ ≪ 1, where ωc is the

cyclotron frequency [24,33]. In strong magnetic fields,
the Hall drag resistivity is finite and can be significant,
arising from the longitudinal drag combined with the intra-
layer Hall responses σL;Rxy [34]. From Eq. (10), we observe
that the Hall drag ρDxy is comparable to the longitudinal drag
ρDxx in magnitude except when (i) both layers are charac-
terized by well-formed quantum Hall plateaus such that the
longitudinal conductivities vanish σL;Rxx ¼ 0, or (ii), since
σL;Rxx ðμÞ ¼ σL;Rxx ð−μÞ and σL;Rxy ðμÞ ¼ −σL;Rxy ð−μÞ, the two
layers have opposite carrier densities [15–17].
Dirac-point drag and Hall drag.—In the following, we

present numerical results for the drag resistivities evaluated
from Eqs. (8)–(11). We employ the Thomas-Fermi approxi-
mation in the screened interlayer Coulomb interaction [30].
We first keep the density of one layer (nL) fixed at the CNP
and vary the density of the other layer (nR). Figure 2(a)
shows the longitudinal drag resistivity as a function of the
density in the vicinity of the CNP for B ¼ 0.5 T. The most
important feature we find is that ρDxx has its maximum value
at the simultaneous CNP nL;R ¼ 0. Away from the CNP, ρDxx
is an even function of nR and decreases with its magnitude.
In Fig. 2(b), we show the Hall drag resistivity ρDxy, which is
an odd function of nR. The magnitude of ρDxy rises sharply
from zero away from the simultaneous CNP and then drops
gradually as the layer’s carrier density is further increased.
In Figs. 2(c) and 2(d), we also depict the behavior of the
drag conductivity as well as the R layer’s longitudinal and
Hall conductivities. As shown in Fig. 2(c), the magnitude of
the drag conductivity jσDxxj decreases with the density. We
note that the sign of the drag conductivity is negative and its
value is 3 orders of magnitude smaller than the longitudinal
and Hall conductivities σxx;xy, which results in a positive
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FIG. 2. Longitudinal (a) and Hall (b) drag resistivities of
double-layer graphene as a function of right-layer electron
density nR for nL ¼ 0, B ¼ 0.5 T, T ¼ 300 K, d ¼ 30 Å,
1=2τ ¼ 1 meV, and αG ¼ 0.4. The filling factor is ν ¼
4.143n½1011 cm−2�=B½T� ≈�12 for this range of density.
(c) shows the corresponding drag conductivities and (d) the
longitudinal and Hall conductivities.
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sign of the drag resistivity ρDxx. Since σLxy ¼ 0 and
σDxx ≪ σL;Rxx , from Eqs. (9)–(11) we observe that the peak
of ρDxy occurs approximately when jσRxxj ¼ jσRxyj, which is a
consequence of the open-circuit condition of the drag layer.
Figure 3 shows the dependence of ρDxx on nL and nR. We

observe that ρDxx is positive in the two quadrants of electron-
hole drag, where the L and R carriers have opposite
polarities, and mostly negative in the quadrants of elec-
tron-electron and hole-hole drag, with ρDxx < 0 except near
the simultaneous CNP at nL;R ≲ 1010 cm−2. These features
are in good agreement with the latest experiment [22]
performed under strong magnetic fields. With the exception
of the CNP vicinity, the signs of magnetodrag for the cases
of same and opposite carrier polarities depicted in Fig. 3 are
the same as that in the zero-field case [6,7,15,16] and
consistent with magnetodrag in conventional 2DEGs [28].
Unlike conventional 2DEGs, however, which would
exhibit no drag when the carrier density is tuned to zero
in one of the layers, double-layer graphene exhibits a
distinctive finite magnetodrag at the simultaneous CNP due
to the presence of a Dirac sea of electrons and a gapless
energy dispersion. While interlayer energy transfer has
been proposed as a possible mechanism [12] to explain the
finite negative drag resistivity at the CNP observed in zero-
field experiments, we emphasize that such a mechanism
does not produce the finite positive drag at the CNP [37] in
the presence of a strong magnetic field that is predicted by
our theory.
The fact that σDxx is nonzero and has a negative sign at

μ ¼ 0 can be physically explained as follows. Let us
assume that the magnetic field is in the z direction and
the electric field is applied to the active layer in the positive
y direction. Assuming that the longitudinal components are

negligible compared to the transverse components of the
intralayer σL;R, this implies that particle currents in the
active layer are in the positive x direction (independent of
whether they are electrons or holes). Therefore, the drag
force on the passive layer is in the positive x direction. This
acts like an effective electric field in the positive (negative)
x direction for holes (electrons), which results in an
“E” × B drift of the holes (electrons) in the negative
(positive) y direction. Hence, for both electrons and holes,
the electric current in the passive layer is in the negative
y direction; i.e., σDxx < 0. At a finite temperature, the drag
currents due to thermally excited electrons and holes
reinforce each other and do not cancel. The drag conduc-
tivity is an even function of the chemical potential,
consistent with the evenness of Γ discussed above.
Since a negative longitudinal conductivity results in a

thermodynamic instability, our findings beg an important
question: Does a negative drag conductivity also imply a
thermodynamic instability? The condition for thermody-
namic stability is that the conductivity matrix be positive
definite. In the presence of a magnetic field, the Hall
conductivities render the conductivity matrix σ

↔
antisym-

metric. For an arbitrary square matrix that is not necessarily
symmetric, the positive definiteness condition depends on
the positivity of the determinant of the symmetric part of
the matrix only [36]. It follows that the Hall conductivities
σL;Rxy drop out, and the resulting determinant is given by
σLxxσ

R
xx − ðσDxxÞ2, which is positive definite, sharing the same

expression with the B ¼ 0 case.
Finally, we have calculated the longitudinal drag resis-

tivity ρDxx at the simultaneous CNP as a function of the
magnetic field for different values of the interaction
parameter αG. Figure 4 shows that ρDxx is highly sensitive
to changing the magnetic field strength, increasing to
several kΩs over a few teslas. It also shows that changing

–1.5 –1 –0.5 0 0.5 1 1.5
–1.5

–1

–0.5

0

0.5

1

1.5

0

2

4

6

8

10

FIG. 3. Longitudinal drag resistivity as a function of right-layer
electron density nR and left-layer electron density nL for the same
values of B, T, d, and αG as in Fig. 2.
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the electron-electron interaction strength αG from 0.2 to
0.8 counterintuitively decreases ρDxx. This finding can be
explained by examining the αG dependence of the inter-
layer interaction Uðq;ω; BÞ [30]. Unlike the single-layer
case, where the screened interaction V ∼ αG=ð1þ αGÞ
monotonically increases with αG, the screened interlayer
interaction of a bilayer U ∼ αG=ð1þ α2GÞ decreases for
large αG. This behavior is fully reflected in the drag
resistivity as a function of αG depicted in the inset in Fig. 4.
In summary, we find that the magnetodrag resistivity

of graphene double layers has a maximum and that the
Hall drag resistivity vanishes at the simultaneous CNP.
The Hall drag resistivity is, however, comparable to the
longitudinal resistivity at nearby densities, even though
the Hall drag conductivity vanishes. Our theory accounts
for momentum transfer due to interactions between
density fluctuations in the two layers but does not account
for strong correlations or address all possible scenarios
that have been raised [17,38] in connection with graphene
double-layer magnetodrag. The physics we explore must,
however, contribute significantly to any magnetodrag
measurements.
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