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Strongly correlated metals often display anomalous transport, including 7-linear resistivity above
the Mott-Ioffe-Regel limit. We introduce a tractable microscopic model for bad metals, by restoring in the
well-known Hubbard model—with hopping ¢ and on-site repulsion U—a “screened Coulomb” interaction
between charge densities that decays exponentially with spatial separation. This interaction lifts the
extensive degeneracy in the spectrum of the # = 0 Hubbard model, allowing us to fully characterize
the small ¢ electric, thermal, and thermoelectric transport in our strongly correlated model. Throughout the
phase diagram we observe 7T-linear resistivity above the Mott-loffe-Regel limit, together with strong
violation of the Wiedemann-Franz law and a large thermopower that can undergo sign change.
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Introduction.—In conventional metals electrical resis-
tance arises from the microscopic scattering of electronic
quasiparticles. This paradigm is challenged in bad metals,
where the resistivity grows with temperature above the
Mott-loffe-Regel limit [1]. Such behavior is widely
observed in strongly correlated materials at high temper-
atures [2,3], and it hints at nonquasiparticle transport which
must be understood along radically different lines than
traditional Boltzmann theory.

High temperature bad metallic regimes of strongly
correlated materials are often far from the battleground
of multiple low temperature competing orders. Indeed, bad
metals exhibit similarities across many materials, including
an often noted 7T-linear resistivity [4]. Despite suggestive
universal behavior, and some success reproducing this
behavior numerically using methods such as dynamical
mean field theory (DMFT) [5-8], the understanding of bad
metals has been hampered by the lack of a microscopic
theoretical model in which the resistivity can be computed
in a transparent way without artificial control parameters.
To this end we introduce a realistic modification of the
widely studied Hubbard model for correlated electrons that
allows us to obtain explicit results for high temperature,
nonquasiparticle bad metal transport.

The model.—We will study the lattice Hamiltonian
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As usual, the density n; = 3 ¢l ¢;,, with s € {1, |} being
the fermion spin. The positions X; = ai form a two-
dimensional square lattice. The first two terms in Eq. (1)
constitute the usual Hubbard model, with hopping ¢ over
nearest neighbors (ij) and on-site repulsion U. The final
“screened Coulomb” interaction is short range, but not
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strictly finite range. Such terms are dropped in the conven-
tional on-site Hubbard model (which has V = 0), and also
from finite range extensions thereof, and are essential for
our results. The precise functional form of the interaction
does not qualitatively affect our results. Restoring these
terms allows us to obtain explicit and finite results for
transport coefficients in the weak hopping regime
t < {kgT,U,V}.Here T is the temperature. These temper-
atures are higher than those of most observed bad metals;
they pertain instead to recent transport experiments in cold-
atomic gases [9]. In condensed matter these conditions may
be realized in, for example, oxide thermoelectrics [10] and
magic angle graphene bilayers [11]. Our immediate objec-
tive is rather to obtain controlled and physically transparent
bad metal transport.

Small ¢ transport in the Hubbard model has been studied in
a number of works [10,12]. However, the spectrum of the
Hubbard model with ¢t = 0 is extremely degenerate, with
excitations occupying either the single-site upper or lower
Hubbard band. In contrast, the new interaction in the model
(1)—which is exponentially localized to within a micro-
scopic range # but not strictly finite range—is sufficient to
split the extensive degeneracy of the r = 0 theory (spin
degeneracy remains but will play no role in our discussion).
This allows us to use conventional nondegenerate perturba-
tion theory in small 7 to obtain a low energy spectral density
and hence transport coefficients that are finite in the infinite
volume limit.

All of the terms in the U and V interactions in Eq. (1)
commute. This means that all computations in small ¢
perturbation theory can be evaluated using classical
Monte Carlo simulations in the ¢ = O theory. This statistical
description of bad metal transport is an immense simpli-
fication. The statistical regime is intrinsically incoherent
and distinct from Boltzmann-Drude theory, as emphasized
in Ref. [13]. Using classical Monte Carlo simulations, we
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are able to work with a large system size in two dimensions,
and furthermore to study the entire filling range 0 <n <2
and obtain the full thermoelectric conductivity matrix.

The conductivity.—To leading order at small hopping ¢,
the conductivity is computed as follows. At r = 0 occu-
pation number configurations {n} define eigenstates of
charge N{n} = eZisniS and energy E{n} = %Zisniseis’
with on-site energies ¢;; = Un; + sz;éie_"?f_’?f‘/"”nj.
Here n;; is the number of electrons at site i with spin
opposite to s. Using classical Monte Carlo simulations,
typical configurations {n} are generated for a given
temperature and filling [14]. The real and dissipative
electrical conductivity is a weighted sum over these
configurations,

e PEw—1N )

2 2 2
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Here “vol” is the volume and f(w) = (1 — e™#"*)/hw. The
inverse temperature § = 1/(kgT) and the partition function
Z =3, e?Em N Given a configuration, the spec-
tral weight A, (@) counts the number of excitations with
energy fw that can be generated with a single hop between
neighboring sites. A, (w) has units of inverse frequency
and is defined precisely in the Supplemental Material [14].
Analogous formulas exist for the thermoelectric conduc-
tivity @ and the thermal conductivity x, and they are also
given in the Supplemental Material [14].

The expression (2) is strictly valid only for Aw = t. At
lower frequencies nonperturbative localization physics
could potentially deplete the density of states A; ().
This concern is addressed in a later section. We proceed
to use Eq. (2) to obtain dc transport observables.

Figure 1 shows a representative occupation number
configuration, together with the corresponding on-site
energies ¢€;y. Differences of neighboring on-site energies
determine A, (w), and hence the optical conductivity,
which is also shown in the figure. The conductivity is
computed using 15 000 weighted configurations in Eq. (2).
The optical conductivity displays transitions between lower
and upper “Hubbard bands” together with a low frequency
conductance peak. In the + = 0 Hubbard model the optical
conductivity is a sum of delta functions at @ = 0, =U. In
Fig. 1 these peaks have been broadened, leading to a finite
dc conductivity. This occurs because the exponentially
localized interaction V, with any range ¢ > ¢, ~ 1.76a,
lifts the extensive degeneracy of the + = 0 Hubbard model,
as we show in the Supplemental Material [14]. This is the
only essential property of the interaction.

The low frequency peak in Fig. 1 is Gaussian, in contrast
to a conventional Lorentzian Drude peak. A Gaussian peak
is also seen in the high temperature expansion of a hard
boson model [18], and it indicates that the energy
differences contributing to o(w) are essentially random.
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FIG. 1. On-site energies for a typical configuration with a

29 x 29 lattice at temperature kzT = 0.76U, coupling V = 0.1U,
range £ = 2a, and filling n = 0.63. (Top left panel) Occupation
numbers for the configuration (white is unoccupied, gray is singly
occupied, and black is doubly occupied). (Top right panel) On-
site potentials for up spins, €;4, generated by this configuration. A
broadened upper (red and yellow) and a lower (blue) Hubbard
band are seen. (Bottom panel) The corresponding low frequency
conductance peak. The solid line shows a fit to a Gaussian. (Inset)
The optical conductivity over a wider frequency range, including
transitions between the lower and upper Hubbard bands.

Transport results.—We will work throughout with the
values V = 0.1U and ¢ = 2a. Thus the exponential inter-
action is microscopically short range, and the small value of
V means that results can be compared meaningfully to the
Hubbard model. The hopping ¢ < {U,V, kgT}.

The resistivity for ¢+ < kg7 < U is shown for various
fillings in Fig. 2. Away from the Mott insulating upturn at
n = 1, the resistivity is approximately 7" linear, with some
weak curvature at lower temperatures. The magnitude of
the resistivity is p ~ h/e* x U?/t> > h/e* throughout, so
the system is a bad metal.

Thermoelectric and thermal transport are usefully quan-
tified by the thermopower S = a/c and Lorenz ratio
L =«/(oT), respectively. Figure 4 shows the Lorenz ratio
for t < kgT < U. Strong violation of the Wiedemann-
Franz (WF) law is seen across the entire phase diagram:
L <« L, the Sommerfeld value, almost everywhere, except
for just above the Mott regime, where L > L. The WF law
is not expected to hold at these high temperatures, but L,
remains a useful yardstick for the relative efficacy of
thermal and charge transport. The thermopower is shown
in the Supplemental Material [14] and displays behavior
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FIG. 2. Resistivity as a function of temperature. Statistical
errors are shown.

widely seen in, e.g., DMFT studies of strongly correlated
systems [19-22]: large values S ~ kp/e and changes in sign
as a function of temperature.

At the highest temperatures k37 > U, V our numerical
results are in excellent agreement with known expressions
for the standard on-site Hubbard model [10,12,23]. We
summarize these results in the Supplemental Material [14].
The salient features are an exact T-linear resistivity, a
temperature-independent thermopower S, and a Lorenz
ratio L ~ 1/T?. These limiting behaviors are largely inde-
pendent of the interactions [4,20,24,25].

Origin of T-linear resistivity.—The Gaussian zero
frequency peak in o(w) can be fit to

o1 (w) = Dre~)", (3)

Thus 7 is the current relaxation or transport lifetime. The
resistivity is p = 1/(Dz). The “Drude weight” D is the area
under the low frequency conductance peak. It is best
thought about as follows. The total kinetic energy of all
electrons can be written K,y = [% o(w)dw [26]. The
ratio D/K,, therefore measures the reduction of the
conductance peak kinetic energy due to interactions. In
our incoherent regime the spectral weight D corresponds to
the kinetic energy of hopping processes with a small
potential energy transition.

Figure 3 shows the current relaxation rate 1/7 as a
function of temperature. The relaxation rates all saturate to
a constant of order V/A at high T. The V interaction is
responsible for the finite transport lifetime at small ¢,
whereas in the Hubbard model this lifetime must be
generated nonperturbatively in 7. Away from half filling,
the relaxation rate becomes only mildly temperature
dependent below kzT ~ U and remains nonzero at the
lowest temperatures that we have probed [27]. The
approximate 7" linearity of the resistivity over this temper-
ature range is instead controlled by the kinetic energy of
low energy hopping processes, which exhibits a strong
temperature dependence D ~ t?/T, shown in the inset of

1.2
n ‘
Y
Lol e 02 = 050 « 075 4 10 “,“¢¢‘6“““‘ ¢
. ““16
tin
u'!".‘.‘
00000
000000
1hool S
TV
3
A
A
2 'y
1
0
0.0 0.2 04 0.6 0.8 1.0 1.2
0.6 0.8 1.0 1.2
ksT/U

FIG. 3. Current relaxation rate as a function of temperature.
(Inset) Inverse Drude weight as of function of temperature. The
statistical uncertainty in the fit to Eq. (3) is negligible.

Fig. 3. The decrease of D with increasing temperature is
due to increasingly random single-particle kinetic energies
of both signs, which tend to cancel. We expect the low
temperature divergence in D to be cut off below T ~ ¢,
crossing over to the Fermi liquid value D ~ ¢.

Figure 4 shows the ratio D/K,, across the phase
diagram. The values of D/K, ~0.4-0.6 seen in the
proximity of the Mott regime are characteristic of those
observed in strongly correlated metals [26].

Distinct bad metal regimes.—Hidden under the feature-
less T-linear resistivity lies a crossover in behavior at
kgT ~ U. There are in fact two bad metallic regimes in the
model; temperatures kz7" < U are physically distinct from
the infinite temperature limit. This can be seen by consid-
ering the diffusivity.

In the small ¢ regime it is necessary to consider
coupled charge and heat diffusion. There are three con-
ductivities, o, a, and k, and three associated thermodynamic
susceptibilities: y = —e?0%f/0u?, { = —ed*f/OTOu, and
cy = —TO*f/0T?, as well as the specific heat at fixed
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FIG. 4. (Left panel) Violation of the Wiedemann-Franz law
across the phase diagram. The Sommerfeld value
Ly =r?/3 x (kg/e)*. (Right panel) Fraction of the electronic
kinetic energy in the conductance peak—as measured by D/ K .
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FIG. 5. Inverse diffusivity against temperature. The larger

errors bars on the diffusivity are due to a near cancellation in
the computation of x and ¢, ; see the Supplemental Material [14].
(Inset) Inverse susceptibility against temperature.

charge ¢, =c, - T{ 2 /x. These determine two independent
diffusivities D, by Ref. [4]: D,D_=o¢6/y -x/c, and
D, +D_=c/y+x/c,+T((oc—ya)?/(c,x*c). Figure 5
shows the diffusivity D, as a function of temperature
for several fillings. The behavior of D_ is similar.
The diffusivities are temperature dependent below
kgT ~ U but constant at high temperatures. We have
extended the temperature range to make the saturation
clearer.

The susceptibilities also exhibit crossovers at kg7 ~ U.
For example, the charge compressibility y is well described
by 1/y =a+ bT/U for doping-dependent coefficients a
and b. See the inset of Fig. 5. The nontrivial temperature
dependence of the diffusivities and thermodynamic sus-
ceptibilities conspire to cancel out the electrical resistivity,
whose approximately 7-linear behavior is featureless
across kgT ~ U, as found in Refs. [9,28].

The high temperature behavior of D follows from the
Hubbard model formulas collected in the Supplemental
Material [14]: D, = c,z(ant)*/R*[1 + O(V/U)|, with
¢, =2/m and c_ = n(2 —n)/z. Recall that 7 is temper-
ature independent at high temperatures. Writing
D, < %vzr, these expressions reveal the expected “Lieb-
Robinson-like” microscopic operator growth velocity of
v~ ant/h, in the sense of Ref. [29]. At temperatures
kpT < U, the effective velocity v, =2D, /7 becomes
temperature dependent, tracking the temperature depend-
ence of the kinetic energy D, discussed above.

Origin of bad metallic transport.—Figure 1 (top right
panel) shows an interaction-induced, emergent disordered
landscape of on-site potentials. The current decay rate is set
by the strength of inhomogeneities in this landscape:
1/7 ~ Ae ~ V /h. The separation of scales t < U, V implies
that the landscape evolves slowly and is static on the
timescale of current decay. Therefore, while momentum
is microscopically relaxed by umklapplike electronic

interactions, transport is effectively controlled by local hops
in an inhomogeneous potential. The usual arguments for a
Mott-loffe-Regel bound are thus inapplicable because cur-
rent is not carried by delocalized excitations with a well-
defined momentum. This is the same reason that the bound
does not apply to free electrons in a disordered background
potential, and it raises the concern that our interacting model
may similarly exhibit localization.

Indeed, we noted above that the small ¢ perturbative
computation of the conductivity is not strictly valid for low
frequencies w € (—t, r). We will not exclude the possibility
that a gap opens in this frequency range, analogous to how
the Mott argument leads to a soft gap for strongly
disordered free electrons [30]. Interactions can reduce
the strength of the Mott argument due to an increased
many-body phase space [31]. Most importantly, however,
even if such many-body localization does occur in our
model, it is fragile and can be destroyed by coupling to
physical degrees of freedom that have been omitted for
simplicity in the model. As a proof of concept, we show in
the Supplemental Material [14] that coupling our model to
phonons with a Debye scale w, and dimensionless electron-
phonon coupling g smears out any low frequency gap if
t K /gogkpT < U, V, kgT, while leaving our transport
results intact.

Discussion.—Recent transport measurements in a cold-
atomic realization of the Hubbard model with 0 < kg7 < U
and t < U show remarkable similarities to our results [9].
As we have found, the experiments show a nontrivial
temperature dependence of the diffusivity and charge
susceptibility, which cancel out to produce a close to
T-linear resistivity. The individual temperature dependence
and magnitude of these quantities are all similar to those
that we have found. This suggests that, at least for
temperatures kpT 2 f, our V interaction captures similar
physics to a nonperturbative treatment of ¢ in the on-site
Hubbard model. Indeed, our results are also in agreement
with the trends observed in quantum Monte Carlo simu-
lations of transport in a Hubbard model [28] over a similar
temperature range, with real time transport behavior
inferred from the Euclidean data [32]. A smoking gun
signature of our picture for transport is the emergent
disordered landscape predicted in our model. It should
be possible to directly observe this landscape using local
probes in cold-atom experiments or, perhaps more easily, in
full quantum Monte Carlo simulations.

Finally, a hierarchy between the current decay rate and
the single-particle bandwidth also underpins an interesting
recent body of work on strange and bad metals in large N
models [33-39] and DMFT [5-8]. Several of these
approaches share the feature of our model that the con-
ductivity is controlled by a single-particle electronic spec-
tral function describing rapid electron decay into an inert
“bath.” In our case the single-particle decay is caused by the
emergent disordered landscape.
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