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We present a new first-principles linear-response theory of changes due to perturbations in the quasiparticle
self-energy operator within the GW method. This approach, named GW perturbation theory (GWPT), is
applied to calculate the electron-phonon (e-ph) interactions with the full inclusion of the GW nonlocal,
energy-dependent self-energy effects, going beyond density-functional perturbation theory. Avoiding
limitations of the frozen-phonon technique, GWPT gives access to e-ph matrix elements at the GW level
for all phonons and scattering processes, and the computational cost scales linearly with the number of
phonon modes (wave vectors and branches) investigated. We demonstrate the capabilities of GWPT by
studying the e-ph coupling and superconductivity in Ba0.6K0.4BiO3.We show that many-electron correlations
significantly enhance the e-ph interactions for states near the Fermi surface, and explain the observed high
superconductivity transition temperature of Ba0.6K0.4BiO3 as well as its doping dependence.
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First-principles calculation of electron-phonon (e-ph)
coupling [1] is of tremendous interest as it serves as a
nonempirical approach to predict and understand a number
of phenomena in condensed matter physics and materials
physics, such as phonon-mediated superconductivity, elec-
trical and thermal transport, quasiparticle energy renorm-
alization, charge-density wave (CDW), and vibrational
features in optical spectra. By formulating a linear-response
theory of density functional theory (DFT) [2] to phonon
perturbations, density-functional perturbation theory
(DFPT) [3–6] has been the prevailing and most efficient
ab initio method to study the e-ph interactions within DFT.
The e-ph coupling treated in DFPT is only approximate
since the DFT orbital eigenvalues are not the true electron
(or quasiparticle) energies. This is reflected in that, in
general, the Kohn-Sham eigenvalues do not yield accurate
band gaps and band widths nor information on lifetimes
[7,8]. The exchange-correlation potentials Vxc in DFT
[such as those in the local-density approximation (LDA)
[9] or the generalized gradient approximation (GGA) [10]]
can only be at best considered as an approximation to the
nonlocal, frequency-dependent self-energy operator Σ.
The GW approximation [7,8,11–13] has proven, for

many materials, to be an accurate ab initio method in
capturing the many-electron correlation effects in the
evaluation of the quasiparticle energies. In theGW approxi-
mation, the self-energy operator Σ is expanded in terms of
the single-particle Green’s function G and the screened
Coulomb interactionW to first order, i.e., Σ ¼ iGW, hence
named the GW method. By combining the frozen-phonon
technique with GW calculations, previous studies [14–20]
have found that many-electron corrections to DFT e-ph

coupling strength are essential to accurately describe a
number of phenomena, such as the phonon dispersion in
graphene and graphite [14,15], the temperature-dependent
band gap in diamond [18], and superconductivity in
Ba0.6K0.4BiO3 [17]. However, the frozen-phonon technique
is limited to only investigate couplings to phonon wave
vectors that are commensurate to a large supercell, which
makes it prohibitive to achieve a fine sampling of the
Brillouin zone (BZ). More importantly, frozen-phonon
calculations can only provide some intraband part of the
e-ph matrix elements indirectly and an overall e-ph cou-
pling strength by examining band energy shifts. The e-ph
matrix elements between different bands and for wave
vectors across the full BZ—the essential ingredient
of microscopic e-ph formulations of many physical
phenomena—are not available within frozen-phonon meth-
ods [1,17,19,20]. The importance of self-energy effects in
e-ph coupling and the severe limitations of the frozen-
phonon GW technique thus point to a strong necessity for a
linear-responseGW theory (similar in spirit as DFPT [3–6])
to efficiently and accurately calculate the quasiparticle e-ph
interactions at the GW level [1,17,19,20].
In this Letter, for the first time, we present a first-

principles linear-response GW method to external pertur-
bations, which we call GW perturbation theory (GWPT).
In this scheme, the first-order change of the self-energy
operator to a phonon perturbation ΔqνΣ is constructed from
a linear-response calculation, which is performed within a
single primitive unit cell for any phonon wave vector q and
phonon branch ν. This method avoids the use of supercells,
and the computational cost naturally scales linearly with the
number of phonon modes needed. More importantly, from
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a physics view point, it provides the e-ph matrix elements at
the GW level for any pairs of electronic states directly and
efficiently, making GWPT a desirable ab initio method to
systematically study e-ph interactions including many-
electron self-energy effects. We demonstrate the power
of the GWPT method by studying the e-ph coupling and
superconductivity in Ba0.6K0.4BiO3 [21–23] as well as
other doping concentrations away from x ¼ 0.4. We find
that the GW self-energy renormalizes the DFT-LDA e-ph
matrix elements nonuniformly across the BZ, and enhances
the e-ph coupling constant λ by a factor of 2.4. The
GWPT-calculated λ ¼ 1.14 is strong enough to account
for the high superconducting transition temperature Tc in
Ba0.6K0.4BiO3. We show that the doping dependence in the
superconductivity is mainly from a density of states (DOS)
effect.
Here the GWPT method is formulated for phonon

perturbations, but it can straightforwardly be generalized
to other perturbations such as electric field and strain. We
present the theory for crystals with time-reversal symmetry
(TRS), and spin indices are omitted for simplicity. The key
quantity is the e-ph coupling matrix element gmnνðk;qÞ.
The e-ph matrix element at theGW level can be constructed
in a similar way that the quasiparticle energy is constructed
[8], with the contribution from the GW self-energy replac-
ing that from the exchange-correlation functional VxcðrÞ in
DFT; that is,

gGWmnνðk;qÞ ¼ gDFTmnνðk;qÞ − hψmkþqjΔqνVxcjψnki
þ hψmkþqjΔqνΣjψnki; ð1Þ

where

gDFTmnνðk;qÞ ¼ hψmkþqjΔqνV
KSjψnki ð2Þ

is the e-ph matrix element at the DFT level [1]. VKS is the
total Kohn-Sham potential in DFT, and ψnk and ψmkþq are
the wave functions of the initial and final electron states
involved in the scattering process, with band indices n and
m at wave vectors k and kþ q, respectively. The differ-
ential perturbation operator Δqν gives the linear change in
the quantity it operates on, when the system is perturbed
with a phonon mode labeled by qνwith the atoms displaced
by the zero-point displacement amplitude [1]. The dimen-
sionless operator Δqν carries a crystal momentum of q, and
is explicitly defined as

Δqν ¼
ffiffiffiffiffiffiffiffiffiffi

ℏ
2ωqν

s

X

κα

1
ffiffiffiffiffiffiffi

Mκ
p eκα;νðqÞ

X

Nl

l

eiq·Rl
∂

∂τκαl ; ð3Þ

where α ¼ x; y; z labels the Cartesian directions, κ counts
the atoms in the primitive unit cell,Mκ is the mass of the κth
atom, eκα;νðqÞ is the κα component of the νth eigenvector of

the dynamical matrix at q, ωqν is the phonon frequency, l
labels the lth unit cell in the material, and Rl is the
corresponding lattice position vector. In Eq. (3), the partial
derivative is taken with respect to the atom coordinate τκαl
of the κth atom, along the α direction, and in the lth unit
cell. DFPT calculates ΔqνVKS by self-consistently solving
the Sternheimer equation [1,6]. The Bloch wavefunction
has the form ψnkðrÞ ¼ N−1=2

l eik·runkðrÞ where unkðrÞ is a
lattice-periodic function. Therefore, the calculation of the
e-ph matrix elements at either the DFPT or GWPT level is
indeed done in a primitive unit cell, and no supercells are
needed.
Now we construct the change in the self-energy operator.

A change in Σ involves changes in G and W. Here, we use
the constant-screening approximation [19] such that ΔqνW
may be neglected compared to ΔqνG against small pertur-
bations. The validity of this approximation has been
verified by using frozen-phonon calculations in a previous
study [19] and by our own calculations. It is expected to be
generally valid in semiconductors where the charges are
bounded in bonds, and in metals with large Fermi surfaces.
With this approximation, the change in the self-energy
operator in the frequency domain reads

ΔqνΣðr; r0; εÞ ¼ i
Z

dε0

2π
e−iδε0ΔqνGðr;r0; ε− ε0ÞWðr; r0; ε0Þ;

ð4Þ

where ε and ε0 are energy variables, and δ ¼ 0þ. To
construct ΔqνG, we need the first-order change in the
wave function [6],

ΔqνψnkðrÞ ¼
X

m

gDFTmnνðk;qÞ
εnk − εmkþq

ψmkþqðrÞ; ð5Þ

where εnk and εmkþq are the DFT eigenvalues. Using
the knowledge that DFT eigenfunctions well approximate
the quasiparticle wave functions of most materials [8], the
change in the Green’s function is written as

ΔqνGðr; r0; εÞ

¼
X

nk

ΔqνψnkðrÞψ�
nkðr0Þ þ ψnkðrÞ½Δ−qνψnkðr0Þ��
ε − εnk − iδnk

; ð6Þ

where δnk ¼ 0þ for εnk < εF and δnk ¼ 0− for εnk > εF at
zero temperature, and εF is the Fermi energy. In Eq. (6), we
have used Δqνεnk ¼ 0, which is true for ∀q ≠ 0 connect-
ing nondegenerate states (see more discussions in the
Supplemental Material [24]).
In our implementation of GWPT, a plane-wave basis is

used. The matrix element of ΔqνΣ now becomes
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hψmkþqjΔqνΣðr; r0; εÞjψnki

¼ i
2π

X

n0

X

pGG0
(hψmkþqjeiðpþGÞ·rjΔqνψn0k−pihψn0k−pje−iðpþG0Þ·r0 jψnki

Z

dε0
WGG0 ðp; ε0Þe−iδε0

ε − εn0k−p − iδn0k−p − ε0

þ hψmkþqjeiðpþGÞ·rjψn0kþq−pihΔ−qνψn0kþq−pje−iðpþG0Þ·r0 jψnki
Z

dε0
WGG0 ðp; ε0Þe−iδε0

ε − εn0kþq−p − iδn0kþq−p − ε0
); ð7Þ

where G and G0 are reciprocal lattice vectors, n0 and p are
the band index and wave vector for the internal summation,
andWGG0 ðp; ε0Þ is the screened Coulomb interaction. In the
construction of W, the full dielectric matrix within the
random-phase approximation [33] is used. The Hybertsen-
Louie generalized plasmon-pole model [8] is employed in
this work for the energy convolution of ε0, and we note that
the extension to fully frequency-dependent sampling tech-
niques [34] is straightforward. The energy dependence of
ΔqνΣðεÞ is treated with the strategy that every matrix
element is evaluated at both εnk and εmkþq, and the average
value is taken [35]. Our calculation shows that the energy
dependence of the matrix elements is small. Equation (7)
completes Eq. (1) to get gGWmnνðk;qÞ.
The above formalism ofGWPT has been implemented in

the BERKELEYGW code [34,36], and is interfaced with the
ABINIT code [37] which provides the DFT and DFPT
calculations that generate ΔqνVxcðrÞ and ΔqνψnkðrÞ (see
Supplemental Material [24]). Spatial symmetries and TRS
are used to reduce the phonon q grid [24]. The development
ofGWPT enables access to a lot of new physics where e-ph
and many-electron interactions are strongly intertwined,
especially in correlated materials. Accurate e-ph matrix
elements and their distribution across BZ and bands

calculated using GWPT are essential ingredients in the
understanding of a number of important phenomena
including superconductivity, electrical (thermal) transport,
electron (phonon) lifetimes due to e-ph interactions, and
temperature-dependent direct (indirect) optical absorptions.
We have applied our GWPT method (within a one-shot

calculation, i.e., G0W0PT) to study superconductivity in
Ba0.6K0.4BiO3 in its cubic perovskite phase [Fig. 1(a)],
which has an experimentally measured superconducting Tc
of 30−32K [21–23]. Previous ab initio studies [17,38]
show that the e-ph coupling calculated within DFT-LDA is
too weak to account for such a high Tc in this material, and
frozen-phonon GW calculations indicate that many-elec-
tron self-energy effects may enhance e-ph interactions.
However, the latter was estimated from a limited study
of only a single q-point calculation for one electronic
state [17].
We first perform standard DFT and DFPT calculations

on Ba0.6K0.4BiO3 using the GGA functional [10]. The
calculated Fermi surface shows a regular rounded cubic
shape [Fig. 1(b)] and is strongly nested. We verify our
GWPT method by comparing its results against reference
frozen-phonon GW results at a selected high symmetry q
vector. We focus on the single band [labeled as n0 and

FIG. 1. (a) Crystal structure of Ba0.6K0.4BiO3 in the cubic perovskite phase. (b) Calculated Fermi surface of Ba0.6K0.4BiO3. (c) The
DFT-GGA band structure of Ba0.6K0.4BiO3. The band of interest which crosses the εF (set to zero) is highlighted with blue color and
labeled as n0. The state at k ¼ R=2 (blue dashed line) indicated by the blue dot has a band energy slightly below εF. (d) The DFT band
structure of a 2 × 2 × 2 supercell. The R0 point corresponds to the k ¼ R=2 point at the blue dashed line in (c). The degenerate level
indicated by the blue dot in (c) splits upon the oxygen-atom-displacement perturbation (see Supplemental Material [24]) of 0.0171 Å.
The corresponding GW quasiparticle energies are indicated by the red crosses. (e) Comparison of energy splitting-versus-displacement
curves between perturbation theory and direct frozen-phonon (finite-difference) calculations.
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highlighted in Fig. 1(c)] crossing εF, which is expected to
give the dominant contribution to superconductivity. We
are interested in q ¼ R, corresponding to a 2 × 2 × 2
supercell with atom displacements (see details of the
frozen-phonon calculation and more verifications in the
Supplemental Material [24]). In the frozen-phonon calcu-
lation, the energy of the degenerate states at the BZ
boundary [R0 point in Fig. 1(d)] splits linearly with
increasing displacement (when it is small enough). The
slope in the change in energy with respect to displacement
is given by a specific single e-ph matrix element that can be
fitted from finite-difference frozen-phonon calculations, or
directly calculated with the linear-response perturbation
theory in a primitive unit cell. This type of e-ph matrix
elements that connect degenerate states is the only one that
frozen-phonon GW can relatively accurately calculate by
making supercells [17], butGWPT can access all inter- and
intraband e-ph matrix elements across the whole BZ with
equal and high accuracy. As shown in Fig. 1(e), we find
excellent agreement for this matrix element between
frozen-phonon DFT and DFPT, and between frozen-
phonon GW and GWPT, nicely verifying our GWPT
method. Moreover, the DFPT and GWPT results are
significantly different, illustrating the importance of the
quasiparticle self-energy.
To study superconductivity in Ba0.6K0.4BiO3, we calcu-

late the e-ph matrix elements that scatter quasiparticle
states within the n0 band by performing both DFPT and
GWPT calculations on an 8 × 8 × 8 k grid (full grid) and q
grid (35 irreducible q points) [24]. These electronic states
are coupled most strongly by phonons in the highest three
optical branches [17,38]. As an illustration, we pick out one
high-frequency oxygen stretching and breathing optical
branch (labeled as ν0 [24]), and plot the distribution of the
strength of the e-ph matrix element jgn0n0ν0ðk;qÞj varying
k across the BZ for selected q points. Figures 2(a)–2(c)
show the scatterings for q ¼ R that are mostly relevant to
superconductivity in this material. For this important
phonon mode,GWPT almost uniformly enhances the value
of the e-ph matrix elements g as compared to DFPTwith an
enhancement factor of ∼1.6. This is because the character
of the states on the Fermi surface of Ba0.6K0.4BiO3 is highly
isotropic [39]. However, Figs. 2(d)–2(f) (and Fig. S3 [24])
show strong variances in the distribution of the e-ph matrix
elements and also in the enhancement factor ofGWPT over
DFPT, due to the wave function character changing near the
Γ point of either the initial or final states. These results, for
the first time, systematically reveal the complex nature of
many-electron renormalization of the e-ph interactions,
demonstrating the capability and power of GWPT.
We evaluate the superconducting Tc of Ba0.6K0.4BiO3

using the McMillan-Allen-Dynes formula [40,41]. The
e-ph coupling constant λ and the characteristic logarith-
mic-averaged phonon frequency ωlog [1,40,41] are calcu-
lated using the e-ph matrix elements that scatter states

within the n0 band for all phonon modes, at both the DFPT
and GWPT level (Table I). The correlation-enhanced e-ph
coupling constant is directly reflected in the Eliashberg
function α2FðωÞ by comparing the results from DFPT and
GWPT in Fig. 3(a). The effective Coulomb parameter μ�
[1,40,41] is set to a reasonable physical range in Table I.
DFPT severely underestimates the superconducting
transition temperature, with the calculated Tc in the
range of 0.61–6.1 K for μ� in the range of 0.18–0.08.
However, GWPT significantly increases Tc to the range of

FIG. 2. Distribution of the absolute value of e-ph matrix
elements jgn0n0ν0ðk;q ¼ RÞj at (a) the DFPT and (b) GWPT
level for Ba0.6K0.4BiO3, across the kx − ky plane at fixed kz ¼
−0.25 of the BZ (reduced coordinates). Calculations are per-
formed on the 8 × 8 × 8 k grid for each q point. (c) Line profile
of (a),(b) with ky ¼ 0.0, and the path is indicated by the dashed
line in (a),(b). The enhancement factor of jgGW j=jgDFTj is also
plotted. (d)–(f) Similar to (a)–(c), but with q ¼ R in the kz ¼−0.125 plane.

TABLE I. Calculated e-ph coupling constant λ, logarithmic-
averaged phonon frequency ωlog, and superconducting transition
temperature Tc (using the McMillan-Allen-Dynes formula) of
Ba0.6K0.4BiO3. The effective Coulomb potential parameter μ� is
set to a reasonable physical range, giving the corresponding range
of Tc. The experimentally measured Tc is 30–32 K [21,22].

λ ωlog (K) μ� Tc (K)

DFPT 0.47 488.2 0.18–0.08 0.61–6.1
GWPT 1.14 491.3 0.18–0.08 28.5–44.8
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28.5–44.8 K for the same range of μ� (Table I), in
good agreement with the experimentally measured Tc of
30–32 K [21–23]. These results highlight the importance of
many-electron correlation effects in e-ph interactions [17]
that are well captured by the GWPT method.
We further study the doping dependence of the

superconductivity in Ba1−xKxBiO3 (superconductivity is
observed experimentally for x > 0.3) from first principles,
calculated using a rigid-band approximation [24].
Figure 3(b) shows that the superconducting transition
temperatures from GWPT nicely reproduce the size and
shape of the superconducting half dome (however, results
from DFPT fail significantly) in the phase diagram
observed experimentally [21–23]. At doping concentration
smaller than x ¼ 0.3, the material is in an insulating CDW
phase with strong structural distortions induced by phonon
instability and the nested Fermi surface [17,23,38,42–44].
After x ¼ 0.4, an increase in hole doping concentration x
suppresses Tc, which is mainly due to a reduced DOS with
a shrinking Fermi surface. With a reduced Fermi surface,
the number of e-ph scattering channels decreases, weak-
ening superconductivity (see Supplemental Material [24]
for more analysis). Our GWPT results, along with the
recent direct experimental observation of isotropic s-wave
superconducting gap [39], strongly support that super-
conductivity in Ba1−xKxBiO3 originates from unusually
large e-ph interactions, due to many-electron effects.
In summary, we present the theoretical formu-

lation, practical implementation, and application to
Ba1−xKxBiO3 of the newly developed GWPT method.
GWPT is shown to be able to systematically and accurately

investigate the rich e-ph physics at the GW level, beyond
the accessibility of any other existing ab initio methods.
The capability of GWPT demonstrates its great application
potential to the study of the rich e-ph physics in a wide
range of materials, going beyond DFT.
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