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We propose a novel mechanism for a nonequilibrium phase transition in a Uð1Þ-broken phase of an
electron-hole-photon system, from a Bose-Einstein condensate of polaritons to a photon laser, induced by
the non-Hermitian nature of the condensate. We show that a (uniform) steady state of the condensate can
always be classified into two types, namely, arising either from lower or upper-branch polaritons. We prove
(for a general model) and demonstrate (for a particular model of polaritons) that an exceptional point where
the two types coalesce marks the end point of a first-order-like phase boundary between the two types,
similar to a critical point in a liquid-gas phase transition. Since the phase transition found in this paper is not
in general triggered by population inversion, our result implies that the second threshold observed in
experiments is not necessarily a strong-to-weak-coupling transition, contrary to the widely believed
understanding. Although our calculation mainly aims to clarify polariton physics, our discussion is
applicable to general driven-dissipative condensates composed of two complex fields.
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The phenomenon of macroscopic condensation has been
one of the principal topics in modern condensed matter
physics and optics [1]. The central example is, of course,
Bose-Einstein condensation (BEC), which has been ob-
served in various systems, ranging from atomic gases [2,3],
liquid 4He [4], exciton polaritons [5–8], magnons [9–11],
photons [12], to plasmonic-lattice polaritons [13]. In these
systems, thermalization plays a crucial role in achieving
macroscopic occupation of the lowest energy level.
A photon laser [14,15], in contrast, is a nonequilibrium
condensate, where the population inversion in an optical
gain medium induces macroscopic coherence.
The semiconductor microcavity system [5–8] provides a

unique opportunity to study similarities and differences of
these two classes of condensation phenomena [16], since it
can exhibit both [17], by tuning the pump power. At low
pump power, where the strong light-matter coupling
enables hybrid light-matter quasiparticles called polaritons
to form, their thermalization is efficient due to relaxation
processes such as stimulated scattering. This makes it
possible, once the pump power exceeds a certain threshold,
for the system to exhibit macroscopic coherence among
polaritons to turn into a polariton BEC [5]. At even higher
power, in contrast, the system operates in the weak light-
matter coupling regime as a vertical-cavity surface-emitting
laser (VCSEL), a type of a photon laser, with electrons and
holes acting as a gain medium. Interestingly, a number of
experiments [18–29] have observed a second threshold
between the former and latter regimes, which has been

traditionally interpreted as a strong-to-weak coupling phase
transition.
This two-threshold behavior presents a theoretical

challenge, however. The normal-to-lasing transition is
associated with breaking a Uð1Þ symmetry, but the polar-
iton BEC is already in a Uð1Þ-broken phase. Thus, there
seems to be no good reason to expect a second phase
transition. Indeed, to our knowledge, all theories to date
predict a crossover [30–34].
In this Letter, we propose a novel mechanism for a phase

transition in the Uð1Þ-broken phase, triggered by the non-
Hermitian nature of the out-of-equilibrium condensate.
Starting from the equation of motion of a microscopic
model, we show that the steady states of a two-component
condensate of electron-hole pairs and photons can formally
be classified into two types of solutions, corresponding to
condensation into different branches of the polariton
spectrum. We find that an exceptional point (EP), where
the two solutions coalesce [35–43], may appear due to the
non-Hermiticity of the equation of motion. We prove and
demonstrate that this is the end point of a first-order-like
phase transition line between the two solutions, analogous
to a critical point in a liquid-gas phase diagram. Based on
these results, we propose a phase diagram of an electron-
hole-photon system depicted in Fig. 1. Our theory points
out the possibility of both the crossover and phase
transition from polariton BEC to VCSEL depending on
the experimental settings such as detuning and the pump
power, and provides a possible new interpretation to the

PHYSICAL REVIEW LETTERS 122, 185301 (2019)

0031-9007=19=122(18)=185301(6) 185301-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.122.185301&domain=pdf&date_stamp=2019-05-08
https://doi.org/10.1103/PhysRevLett.122.185301
https://doi.org/10.1103/PhysRevLett.122.185301
https://doi.org/10.1103/PhysRevLett.122.185301
https://doi.org/10.1103/PhysRevLett.122.185301


second threshold as a signal of a lower to upper branch
transition. These physics, although derived mainly with
microcavity polaritons in mind, should be applicable to
other driven-dissipative many-body systems with coupled
order parameters, e.g., atoms in a double-well potential
[44–46], a supersolid realized in two-crossed cavity [47], or
a plasmonic-lattice-polariton BEC [13].
We use a microscopic model schematically shown in

Fig. 2 [32–34,48], which has been shown to capture both
the essential physics of the BEC state and the VCSEL [49],
as well as to give a semiquantitative agreement [48] with
photoluminescence experiments [21,50–52]. The system is
composed of electrons, holes, and cavity photons, which
are coupled to an electron-hole bath and a photon vacuum.
Electrons (holes) are incoherently pumped to the system
from the bath at a rate γeðhÞ. The injected electrons and holes
Coulomb interact with each other and create (annihilate)
photons by pair annihilation (creation). The photons leak
out to the vacuum with the decay rate κ, driving the system
into a nonequilibrium steady state. The explicit expression
for the HamiltonianH is given in the Supplemental Material
(SM) [53].

We apply the Keldysh Green’s function method [54] to
the model. As shown in the SM [53], the dynamics of
the electron-hole dipole polarization pkðr; tÞ and the
electron (hole) density nk;σ¼eðhÞðr; tÞ obeys the generalized
Boltzmann equation [55],

iℏ∂tpkðr; tÞ ¼
�
εk;e þ εk;h −

ℏ2∇2

4meh
− 2iγ

�
pkðr; tÞ

−
X
k0
Lk;k0 ðr; tÞΔk0 ðr; tÞ; ð1Þ

∂tnk;σðr; tÞ þ vk;σ ·∇nk;σðr; tÞ

¼ −
2γσ
ℏ

nk;σðr; tÞ þ Ik;σðr; tÞ: ð2Þ

Here, εk;eðhÞ ¼ ℏ2k2=ð2meðhÞÞ þ Eg=2 is the dispersion of
the electron (hole) in the conduction (valence) band, where
meðhÞ is the effective mass of electrons (holes). Eg is the
energy gap of the semiconductor material. meh ¼
2memh=ðme þmhÞ is twice the reduced mass of an electron
and a hole, and vk;eðhÞ ¼ ℏk=meðhÞ. We have introduced the
order parameter Δkðr; tÞ ¼

P
k0Vk−k0pk0 ðr; tÞ − gλcavðr; tÞ

describing the condensed phase, where λcavðr; tÞ ¼
haðr; tÞi is the coherent cavity-photon amplitude [where
aðr; tÞ is the annihilation operator of a cavity photon], Vk ¼
e2=ð2ϵjkjÞ is the two-dimensional Coulomb interaction (ϵ
is the dielectric constant), and g is a dipole coupling
between carriers (electrons and holes) and photons. The
coupling of the system to the bath causes the dephasing
(decay) of pkðr; tÞ ðnk;σðr; tÞÞ with the rate 2γ (2γσ), where
γ ¼ ðγe þ γhÞ=2. Lk;k0 ðr; tÞ and Ik;σðr; tÞ in Eqs. (1) and (2),
determined microscopically from the self-energy Σ̂ and the
Green’s function Ĝ in the Nambu-Keldysh formalism (see
SM [53] for their explicit form), describe many-body
interaction effects such as exciton formation, collision,
phase filling etc., as well as the electron-hole pumping and
its thermalization.
The electron-hole dynamics is coupled to the dynamics

of the coherent cavity-photon amplitude, given by the
Heisenberg equation [53],

iℏ∂tλcavðr; tÞ ¼ h½aðr; tÞ; H�i

¼
�
ℏωcav −

ℏ2∇2

2mcav
− iκ

�

× λcavðr; tÞ þ g
X
k

pkðr; tÞ; ð3Þ

where ℏωcav is the cavity-photon energy, and mcav
is a cavity-photon mass. In analogy to λcavðr; tÞ, we
define for later use a complex electron-hole pair amplitude
λehðr; tÞ by pkðr; tÞ ¼ λehðr; tÞϕkðr; tÞ,

P
kjϕkðr; tÞj2 ¼ 1,

Arg½Pkϕkðr; tÞ� ¼ 0 [56].
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FIG. 1. Proposed phase diagram of a driven-dissipative elec-
tron-hole-photon gas, in terms of the photon decay rate κ and the
pump power P. (a) Blue detuning. (b) On resonance. (c) Red
detuning. “−ðþÞ” represents the “−ðþÞ”-solution phase, “N”
represents the normal phase, “EP” is the exceptional point, and gR
is the Rabi splitting. The thick (thin) solid line represents the
phase boundary in the condensed phase (between the normal and
the condensed phase).
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FIG. 2. Model driven-dissipative electron-hole-photon gas. The
system is attached to an electron-hole bath and a photon vacuum.
Electrons (holes) are incoherently supplied to the system with the
rate γeðhÞ. In the system, the injected electrons (“e”) and holes
(“h”) repulsively (e-e, h-h) and attractively (e-h) interact with the
Coulomb potential Vk−k0 ¼ e2=ð2ϵjk − k0jÞ. The electrons and
holes pair-annihilate (create) to create (annihilate) cavity photons
(“ph”) via the dipole coupling g. The created photons in the cavity
leak out to the vacuum with the decay rate κ.
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Our main assumption in what follows is that the system
supports spatially uniform, steady-state solutions given by
the ansatz [30–34,48,57,58] λcavðehÞðtÞ ¼ λ0cavðehÞe

−iEt=ℏ,

where E is the (real) condensate emission energy.
Although, in real systems, there is always a chance that
such a uniform steady state destabilizes, e.g., due to the
dynamical instability that leads to pattern formation
[59–61] or the occurrence of many-body localization
[62], we ignore such possibilities in this Letter. In this
formulation, λ0cavðehÞ corresponds to the photonic (excitonic)
component of the macroscopic many-body wave function.
With this ansatz, Eqs. (1) and (3) satisfy a non-Hermitian

eigenvalue equation,

Â
�
λ0cav

λ0eh

�
¼

�
hcav g0
g̃�0 heh

��
λ0cav

λ0eh

�
¼ E

�
λ0cav

λ0eh

�
; ð4Þ

where hcav¼ℏωcav−iκ, g0 ¼ g
P

kϕk, g̃�0 ¼ g
P

k;k0ϕ
�
kLk;k0 ,

and heh¼
P

k½ðεk;eþεk;h−2iγÞjϕkj2−
P

p;k0Vk−pϕ
�
kϕpLk;k0 �.

We emphasize that Eq. (4) is a steady state condition that
determines the macroscopic variables λ0cavðehÞ and is analo-

gous to a gap equation, not to be confused [63] with the
equations for determining the polariton spectra in the
normal state [6]. For instance, the trivial solution λ0cav ¼
λ0eh ¼ 0 describes the normal state.
Equations (1)–(3) must be solved self-consistently

for a given set of microscopic parameters to determine
the quantities that enter Eq. (4) [69]. However, we can
draw a number of strong conclusions by analyzing the
structure of the latter alone. The matrix Â can be dia-
gonalized with eigenvectors u− ¼ ½ð−φþ Ω=2Þ;−g̃�0�T,
uþ ¼ ½g0; ð−φþΩ=2Þ�T, and corresponding eigenvalues
E� ¼ ½hcav þ heh �Ω�=2. Here, Ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φ2 þ 4g̃�0g0

p
, φ ¼

hcav − heh, and we take ReΩ ≥ 0 (i.e., ReEþ ≥ ReE−)
without loss of generality. In the diagonal basis, Eq. (4)
reads ðE− − EÞλ0− ¼ ðEþ − EÞλ0þ ¼ 0, where ðλ0−; λ0þÞT ¼
Ûðλ0cav; λ0ehÞT with Û−1 ¼ ðu−; uþÞ. From this relation, we
see that λ0− and λ0þ cannot be nonzero simultaneously as
long as E− ≠ Eþ, allowing us to classify the nontrivial
solutions into two types: ðλ0− ≠ 0; λ0þ ¼ 0; E ¼ E−Þ and
ðλ0þ ≠ 0; λ0− ¼ 0; E ¼ EþÞ, which we label “−” and “þ”,
respectively. This property is essentially different from
similar time-dependent coupled-damped oscillator equa-
tions, i∂tðψ1;ψ2ÞT ¼ Ĥcdoðψ1;ψ2ÞT (where ψ1 and ψ2

are complex numbers and Ĥcdo is a non-Hermitian
2 × 2 matrix), which are often discussed in the field of
non-Hermitian quantum mechanics [36–43], where the
transient dynamics generally allows for a superposition
of eigenmodes.
Now we show our main result of this Letter: A first-

order-like phase transition between the two solutions can
occur and the EP Ω ¼ 0, where u� coalesce such that Â

only has a single eigenvector, marks the end point of the
phase boundary. The proof is presented in the SM [53] and
we sketch the argument here. Introducing the complex
splitting between E− and Eþ,

Λ≡Ω2 ¼ φ2 þ 4g̃�0g0; ð5Þ

we divide the complex Λ plane into the regions I–IV,
according to the strong-coupling condition [70] δ̃2 þ
4Re½g̃�0g0� ≥ 4κ2 (where δ̃ ¼ Reφ) and the sign of ImΛ,
as shown in Fig. 3(a) [71]. Because of the restriction of real
E, only one solution type can exist in the weak-coupling
regime (regions II and III), which switches label with no
physical discontinuity between regions II and III. On the
other hand, both (distinct) solution types may coexist in
the strong-coupling regions I and IV. Thus, starting from
the “−” solution in region III, while no discontinuity would
be seen when entering region II directly, changing param-
eters in a route that encircles the EP (III → IV → I → II)
requires a phase transition in order to end up in the required
“þ” solution in region II, proving the result [72].
To make contact between the above general arguments

and real physical systems, we explicitly solve for the
polariton BEC and VCSEL. In the dilute equilibrium limit
(κ ¼ 0; γ → 0þ; nk;σ ≪ 1) where the polariton BEC is
realized, Eq. (4) reduces to [53]

ÂBEC ¼
�
ℏωcav gR
g�R ℏωX

�
; ð6Þ

in the Hartree-Fock-Bogoliubov approximation (HFBA)
[32–34,48], which is justified in this limit [73]. Here,
ℏωX ¼ Eg − Ebind

X is the exciton energy (Ebind
X is the exciton

binding energy) and gR ¼ gϕXðr ¼ 0Þ is the Rabi splitting,
where ϕXðrÞ is an exciton wave function obeying the
Schrödinger equation

R
dr0½−δðr − r0Þℏ2∇02=meh − Vðr −

r0Þ�ϕXðr0Þ ¼ −Ebind
X ϕXðrÞ [73]. The eigenvalues, given by

polariton
BEC

EP+
VCSEL

(b)
+[I]
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2+4Re[g
0
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0
]=4 2

~ ~*
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+

EP
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FIG. 3. (a) Definition of regions I–IV. In region II (III) in
the weak-coupling regime, only the “þð−Þ” solution is allowed.
On the dotted line, the solution type switches without being
accompanied by discontinuity. (b) Schematic description of how
a polariton BEC evolves to a VCSEL, in terms of Λ. The system
exhibits a phase transition (crossover) from a polariton BEC to a
VCSEL when Λ changes counterclockwise (clockwise) around
EP.
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EBEC
� ¼ ½ℏωcav þ ℏωX �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ 4jgRj2

p
�=2, are just the

lower and upper polariton energies [6] (where δ ¼ ℏωcav −
ℏωX is the conventional detuning parameter). Comparison
of the free energies of the two solutions tells us that the “−”
solution always emerges.
When the photon decay rate κ is turned on, a phase

transition can occur. In the so-called polariton laser regime,
where the gas is dilute enough to maintain the polariton
picture, the equation of motion is governed by the driven-
dissipative Gross-Pitaevskii (ddGP) equation [74] general-
ized to the two-component case, given by [53]

ÂGP ¼
�
ℏωcav − iκ gR

g�R ℏωX þ UXjλ0ehj2 þ iRX

�
; ð7Þ

where UX is an exciton-exciton interaction strength and
RX > 0 describes the net gain of exciton coherence that
feeds the condensate [75], arising microscopically from
processes such as stimulated scattering. This gives EGP

� ¼
½ℏωcav þ ℏωX þ UXjλ0ehj2 − iðκ − RXÞ � ΩGP�=2 with

ΩGP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ̃2 þ 4jgRj2 − ðκ þ RXÞ2 − 2iδ̃ðκ þ RXÞ

q
, where

δ̃ ¼ ℏωcav − ðℏωX þ UXjλ0ehj2Þ is an effective detuning
that takes into account the Hartree shift of the exciton
component. One finds an EP (ΩGP ¼ 0) at δ̃ ¼ 0 and
gR ¼ RX ¼ κ, giving rise to a phase transition in its
vicinity.
We demonstrate this by explicitly solving Eq. (4) when

Â ¼ ÂGP. Figure 4 shows the calculated emission energy E
as a function of the decay rate κ and the coherent photon
number n0ph ¼ jλ0cavj2 (which roughly corresponds to the
pump power), in the blue detuning case δ=gR ¼ 0.1. At
κ < gR, we find that the “−” solution disappears at a critical
value of the pump power, resulting in a phase transition
signaled by the discontinuity in E. In constructing the phase
diagram, we have assumed that we always realize the
lowest-energy solution. Relaxing this assumption would
shift the position of the phase boundary in detail but not its
end point. As expected, the phase boundary ends at the EP
(where κ ¼ gR). When κ > gR, the “−” solution crosses

over to the “þ” solution. The fact that a phase transition
arises within the ddGP (where the polariton picture still
holds) suggests that the second threshold observed in
experiments does not necessarily imply a strong-to-
weak-coupling transition to a photon laser. More discussion
on this aspect can be found in the SM [53].
At high pump power where the system operates as a

VCSEL, it has been shown within the HFBA [32–34] that
Eqs. (1)–(3) reduce to the semiconductor Maxwell-Bloch
equations [15], with Lk;k0 ¼ δk;k0Nk ¼ δk;k0 ð1 − nk;e − nk;hÞ
and

ÂVL ¼
�
ℏωcav − iκ g0

g̃VL�
0 ℏωVL

eh − 2iγ

�
; ð8Þ

where ℏωVL
eh ¼ P

k½ðεk;e þ εk;hÞjϕkj2 −
P

pVk−pϕ
�
kϕpNk�

and g̃VL�
0 ¼ g

P
kϕ

�
kNk. A crucial difference compared to

the polariton laser case, Eq. (7), is the condensate feeding
mechanism. The electron-hole gain RXð> 0Þ present in the
polariton laser is absent in the VCSEL, since the thermal-
ization process does not work efficiently. Instead, the
condensate is fed by stimulated emission arising
from the population inversion Nk < 0. As a result, it is
straightforward to show [53] that ReΛVL < 0 holds when
ImΛVL ¼ 0 in the weak-coupling regime [76], allowing
both the solution types to appear and smoothly switch
labels with one another.
Figure 3(b) summarizes the above discussion in terms of

the complex splitting Λ. Here, the polariton BEC regime
lies on the real axis ΛBEC ¼ δ2 þ jgRj2 > 0. Thus, starting
from the polariton BEC with “−” solution, by changing
parameters such that Λ evolves clockwise or counterclock-
wise around the EP, the system exhibits a crossover or
phase transition, respectively, into a VCSEL.
We connect our discussion in Λ space to the physical

phase diagram in Fig. 1. Starting from the polariton BEC
(κ ¼ 0), as the decay rate κ is turned on such that the system
turns into a polariton laser [Eq. (7)], one sees from the
expression of ΛGP ¼ Ω2

GP that ImΛ increases (decreases)
from zero in the case of an effective red (blue) detuning
δ̃ < 0 (> 0), where Λ evolves counterclockwise (clock-
wise). Since the increasing pump power P usually shifts the
effective detuning to red (note that δ̃ ¼ δ −UXjλ0ehj2), we
predict that there always exists a phase boundary between
the polariton BEC and VCSEL in red detuning, δ < 0

[Fig. 1(c)]. On the other hand, in blue detuning, δ > 0, δ̃
may switch its sign to negative when P increases. Whether
this sign change occurs at a positive or negative ReΛ
determines whether the evolution of Λ may reverse to
counterclockwise. Thus, we conjecture that, in the blue
detuning case, there exists a phase boundary with an end
point, as shown in Fig. 1(a). On resonance, δ ¼ 0, since we
know from Eq. (7) that the EP is at κ ¼ gR in the dilute limit

 0.8
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 0

/gR
nph0

( E
-E
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FIG. 4. Calculated emission energy E in the case Â ¼ ÂGP as a
function of the photon decay rate κ=gR and the (coherent) photon
number n0ph ¼ jλ0cavj2. The solid line projected onto the n0ph-κ=gR
plane is a phase boundary. The star represents the EP. We set
δ=gR ¼ 0.1;ℏωX=gR ¼ −2; UX=gR ¼ 0.1.
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jλ0ehj → 0 (δ̃ ¼ δ ¼ 0), the EP lies on the boundary between
the normal and the condensed phase [Fig. 1(b)].
Physically, when the effective detuning becomes more

red, the lower branch becomes more photonic [6], hinder-
ing condensation to the lower branch as photonic losses
increase and gain from the excitonic component becomes
small. Meanwhile, the upper branch becomes more exci-
tonic, which makes the system favor the latter and
eventually driving the phase transition. In contrast, as long
as the system stays in effective blue detuning, it remains in
the “−” solution, exhibiting a crossover.
We close our Letter by commenting on the connection to

experiments. Most reported experiments exhibiting the
two-threshold behavior are done on resonance or in red
detuning with a small decay rate κ < gR [18–28], while a
single-threshold behavior to a photon laser has been
observed at a large blue detuning [17]. These results are
consistent with our proposal (more detailed discussion is
provided in the SM [53]) which makes us hopeful that an
experimental encirclement of the EP is within reach.
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