
 

Liquid Helix: How Capillary Jets Adhere to Vertical Cylinders
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From everyday experience, we all know that a solid edge can deflect a liquid flowing over it significantly,
up to the point where the liquid completely sticks to the solid. Although important in pouring, printing, and
extrusion processes, there is no predictive model of this so-called “teapot effect.” By grazing vertical
cylinders with inclined capillary liquid jets, here we use the teapot effect to attach the jet to the solid and
form a new structure: the liquid helix. Using mass and momentum conservation along the liquid stream, we
first quantitatively predict the shape of the helix and then provide a parameter-free inertial-capillary
adhesion model for the jet deflection and critical velocity for helix formation.
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When a liquid is poured too slowly from a container, it
has the tendency to “stick” to the container edge, running
down along the container’s wall instead of separating
from it. To avoid this inconvenience often referred to as
the “teapot effect,” millennia of empirical evidence has
taught potters the design of the container edge, and in
particular its sharpness, is of paramount importance. It was
however demonstrated only recently by Duez et al. [1] that
even for rapid inertial flows, the wettability of the surface
also plays an unexpectedly important role and can be used
to control liquid flow separation [2,3]. Yet, although the
teapot effect has received attention from physicists for
centuries [1–13], a simple quantitative description fully
capturing the observations is still lacking. From a practical
point of view, understanding the teapot effect is of para-
mount importance not only for designing food containers
but also to better control flows through orifices [14], to
avoid fouling up the nozzle of inkjet and 3D printers [15],
and for polymer extrusion processes where capillary
adhesion causes “sharkskin” instabilities [16].
In this Letter, we experimentally investigate the adhesion

of capillary water jets to vertical cylinders (Fig. 1). High-
speed jets are deflected due to inertial-capillary adhesion,
and upon decreasing the flow rate, they eventually fold
around the cylinder and completely stick to it. The jet then
turns into a steady rivulet which flows down the cylinder,
forming an elegant novel fluidic structure, the liquid helix,
thus, transforming an everyday annoyance into an simple
way to produce complex patterns analogous to those of
“liquid rope coiling” that recently received much attention
[17]. We first investigate the rivulet helical trajectory over a
wide range of geometrical parameters. We then look into
the high-velocity regimewhen the jet is bent by the cylinder
but still separates and identify the critical velocity to form a

liquid helix. All these results can be accounted for using
momentum conservation on the liquid stream, both for the
helix shape and the jet deflection. In particular, the
proposed model is the first to actually predict a sticking
transition, and its scaling laws are in excellent agreement
with experiments.
Our helix experiment is shown schematically in Fig. 1(a).

A jet inclined by an angle ψ0 with respect to the vertical
is generated by flowing water (density ρ ¼ 1 g=cm3,
viscosity η ¼ 1 cP, surface tension γ ¼ 72 mN=m) from
a pressurized tank through a nozzle [bore diameter
0.2 < DjðmmÞ < 1.5]. The volumetric flow rate Q is kept
constant (controlled by a precision valve and measured using
a flowmeter). The jet is impacted on a vertical cylinder made
of glass (contact angles θ ≈ 30° with fluctuations between
cylinders) or teflon (θ ≈ 90°) with a diameter 1.05 <
DcðmmÞ < 14.4 (see Supplemental Material [18]). As
the degree of overlap between the jet and the cylinder
is a critical parameter [11,12], we use a linear stage to
translate the nozzle until it barely touches the cylinder.
Figure 1(b) shows photographs of an experiment in which
the flow rate is decreased and increased again. The
pictures show that as the flow rate Q is decreased, the
water jet is increasingly bent by the glass cylinder until at
a critical flow rate it completely sticks to the cylinder,
forming a helical rivulet. This sticking transition is
hysteretic: Increasing the flow rate again does not cause
the immediate breakdown of the helix. For all our experi-
ments, the jet Reynolds and Froude numbers are
quite high: 360 < Re ¼ ρU0Dj=η < 6600 and 7 < Fr ¼
U0=

ffiffiffiffiffiffiffiffi
gDj

p
< 308 with U0 ¼ 4Q=πD2

j the initial jet speed.
The initial phase of the jet sticking will thus be governed
by inertia, though it will turn out that viscosity and gravity
affect the helix after a couple of revolutions.

PHYSICAL REVIEW LETTERS 122, 184501 (2019)
Editors' Suggestion Featured in Physics

0031-9007=19=122(18)=184501(5) 184501-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.122.184501&domain=pdf&date_stamp=2019-05-08
https://doi.org/10.1103/PhysRevLett.122.184501
https://doi.org/10.1103/PhysRevLett.122.184501
https://doi.org/10.1103/PhysRevLett.122.184501
https://doi.org/10.1103/PhysRevLett.122.184501


The shape of the helix.—We first focus on the helical
rivulet regime, for which the jet sticks completely to the
cylinder. Neglecting the small thickness variations, we
assume that the fluid stream describes a helical motion
with a constant helix radius Rh ¼ ðDc þDjÞ=2. The
rivulet trajectory can then be parametrized by the rivulet
arc length s and its local angle with respect to the vertical
ψðsÞ. It is insightful to “unwrap” the trajectory on an
effective Cartesian plane ðX; zÞ shown in Fig. 2(a). The
azimuth ϕ is then replaced by X ¼ Rhϕ, and the tangent
vector becomes planar (see Supplemental Material [18]).
The problem then becomes mathematically equivalent to
finding the trajectory of the rivulet formed by the impact
of a jet of vanishing incidence on a flat plate. Given the
large Re and Fr, we anticipate the initial revolution to
be dominated by inertia. The initial z momentum is
unchanged, while the x momentum is transferred to the
orthoradial direction X (once unwrapped). Without viscous
friction or gravity, the unwrapped rivulet trajectory is
trivially a straight line; this corresponds to a helix of
constant pitch λ ¼ 2πRh= tanψ0 once wrapped around
the cylinder. In the inset of Fig. 2(a), we compare this
prediction to the experimentally observed initial pitch λ0
[defined in Fig. 1(a)]. Indeed, the inertial prediction
accurately describes the initial pitch λ0, except for the
slowest jets.
However, the actual pitch is clearly not constant and

increases as the helix goes down (Figs. 1 and 3). After a few
turns, the rivulet has lost most of its orthoradial momentum,
and the liquid only flows downward. Introducing gravity
into the inertial description indeed stretches the helix but
only by a negligible amount [see Fig. 2(b), blue curve].
Instead, a quantitative description of the helix calls for both
gravity and viscous friction. In the spirit of the analysis of

hydraulic jumps [26,27] and meandering rivulets [28,29],
we therefore perform a momentum balance on an infini-
tesimal portion of the rivulet [see Fig. 2(a)] including
gravity, viscous friction, and the inertial-capillary adhesion
force. At steady state, the flux Q ¼ AU is constant along
the helix, where we introduced UðsÞ as the mean rivulet
velocity averaged over the cross-sectional area AðsÞ. If we
further introduce unit vectors along the rivulet, t̂ðsÞ, and
normal to the cylinder n̂ðsÞ, the steady momentum balance
reads
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FIG. 2. (a) Sketch of the (unwrapped) rivulet model. The
impacting jet turns into a rivulet whose centerline (drawn as a
red dashed line) is parametrized by the arc length s and the angle
with respect to the vertical axisψðsÞ. Inset: Initial helix pitch λ0=Rh
as a function of the jet inclination angle ψ0 for varyingDj,Dc, and
initial velocityU0;X (color coded in m/s). Dashed line is the inertial
prediction λ0 ¼ 2πRh= tanψ0. (b) Theoretical helix shape includ-
ing the effect of gravitywith (orange curve) andwithout (blue curve)
viscous effects for typical experimental parameters (Dc ¼ 10 mm,
Dj ¼ 0.8 mm, ψ0 ¼ 64°, U0 ¼ 2.1 m=s, and C ¼ 11).
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FIG. 1. (a) Schematic of the experiment indicating the initial inclination angle ψ0 and helical pitch λ0. (b) Side-view pictures of a
sequence of experiments showing the deviation of a 0.5 mm water jet grazing a 3.0 mm glass cylinder. The flow rateQ is decreased until
the penultimate image and then increased again to illustrate the hysteresis in the sticking transition.
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ρQ
dðUt̂Þ
ds

¼ Wðτt̂ − ΔPn̂Þ þ ρAg: ð1Þ

In this expression, τ is the wall shear stress, while ΔP is the
difference of pressure between the upper and lower sides
of the jet, both averaged over the rivulet width WðsÞ (see
Supplemental Material [18]).
So far, Eq. (1) is without approximations. The inertial-

capillary adhesion force is encoded in the pressure differ-
ence ΔP. In the regime where a helix forms, however, ΔP
will be balanced by the centrifugal acceleration along n̂, but
this does not affect the shape of the helix. To estimate the
wall shear stress, we assume a two-dimensional parabolic
flow such that τ ≈ −3ηU=h, with hðsÞ the rivulet thickness
at the centerline. This is complemented by the geometric
assumptions A ≈Wh andWðsÞ ≈Dj (constant width) such
that τW ¼ −3CηD2

jU
2=Q with C a form factor encom-

passing the three aforementioned assumptions that we
consider constant along the stream. With this, the momen-
tum balance [Eq. (1)] takes the form (cf. Supplemental
Material [18])

dU
ds

¼ −
48ηC
π2ρD2

j

�
U
U0

�
2

þ g cosψ
U

; ð2Þ

dψ
ds

¼ −
g sinψ
U2

ð3Þ

once projected along the rivulet in the unwrapped ðX; zÞ
plane. The helix shape is then extracted from ψðsÞ as
dz=ds ¼ cosψðsÞ and dX=ds ¼ sinψðsÞ. We numerically
integrate Eqs. (2) and (3) with initial conditions (U0, ψ0)
and wrap the trajectory around the cylinder to obtain the
helix shape.
Figure 2(b) compares the calculated helix shape with and

without viscous effects using typical experimental param-
eters. It clearly shows that both gravity and viscosity are
necessary to quantitatively account for the experiments:
The pitch increases significantly over a few turns, and the
rotation slows down and eventually stops. The direct
agreement with experiment is excellent (Fig. 3), with
C ∼ 10 as the only adjustable parameter that does not vary
much for most of our experimental conditions. The helix
shape could therefore be tuned by controlling the friction
through the fluid viscosity. However, rotating the cylinder
breaks the helix and coats the cylinder with a thin film.
Critical speed for helix formation.—Now that we under-

stand the shape of the helical rivulet, we aim to describe
how the jet sticks to the cylinder. In the experiment, we
measure the jet deviation angle α with respect to the
incident jet as we decrease the flow rate Q from top-view
pictures [Fig. 4(a)] and vary the jet size Dj, cylinder size
Dc, inclination angle ψ0, and contact angle θ. Since the jet
velocity is higher here than in the helix regime, we fully
neglect gravitational and viscous effects. The relevant

dimensionless numbers for the experiment are therefore
the Weber number We ¼ ρU2

0Dj=γ, the dimensionless
cylinder radius R̃ ¼ Dc=ð2DjÞ, the contact angle θ, and
the inclination angle ψ0.
Figure 4(c) shows α as a function of We for two

representative dimensionless cylinder radii R̃ and various
inclination angles ψ0 (for these glass cylinders, θ ¼
32� 15°). In all cases, the jet deviation is very small at
high speeds (α ∼ 5°) and gradually increases up to a
complete overturn (α ¼ 180°) as the speed is decreased.
Once the overturn is reached, the jet sticks to the cylinder
and forms the helical rivulet. We observe that larger
cylinders, smaller inclination angles, and lower contact
angles result in stronger jet deviations. In fact, the depend-
ence on ψ0 can be scaled out by plotting the same data as a
function of the Weber projected in the orthoradial direction,
i.e., Wek ¼ We sin2 ψ0. The collapse shown in Fig. 4(d)
suggests that the problem is effectively two dimensional
and can be understood from a projection in the horizontal

FIG. 3. Comparison between experiments and theory for a
range of experimental parameters. From left to right: Dc ¼ 1, 5,
5, 10 mm; Dj ¼ 1, 0.3, 0.5, 0.3 mm; ψ0 ¼ 26.3, 40.3, 47.8,
68.6 deg; U0 ¼ 1.0, 4.9, 3.0, 5.4 m=s; C ¼ 15, 11.5, 7, 9.5.
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plane [Fig. 4(b)]. Our experimental findings on the
helix qualitatively agree with earlier experiments on fluids
flowing from a solid disk [1]. Quantitatively, however, our
results are different: Our experiments show that the jet can
make a complete U-turn, and it is only at this point that the
sticking transition happens, whereas the previous ex-
periment put the maximum deflection at ≈85°. Another
important difference is observed for the sticking transition.
In Fig. 4(e), we plot the critical speed Wekc for all our
experiments and reveal a linear dependence with R̃. This is
contrastedwith the scaling∼R̃2 initially suggested inRef. [1].

To rationalize these experimental results, we now develop
an inertial-capillary adhesion model for the case where the
jet separates from the cylinder [Figs. 4(a) and 4(b)]. We
return to the momentum conservation Eq. (1) and make use
of the fact that in this regime one can neglect gravity and
viscosity. Consequently, both U ¼ U0 and ψ ¼ ψ0 will
remain constant, as can be inferred fromEqs. (2) and (3), and
therefore, A ¼ A0 (mass conservation). Hence, we can
integrate Eq. (1) along the arc length as ρA0U2

0ðt̂out − t̂inÞ ¼
−
R
dsΔPWn̂. This gives the momentum balance for the

control volume indicated by the dashed line Fig. 4(b). Since
n̂ is normal to the cylinder, it is natural to project both t̂
and ds ¼ dsk= sinψ0 onto the horizontal (x,y) plane. As
shown in the Supplemental Material [18], this renders the
problem two dimensional based on an effective velocity
U0;x ¼ U0 sinψ0. This explains the collapse of the deviation
angle α as a function Wek given in Fig. 4(d) and the
similarity with the experiment of Ref. [1]. In the remainder,
we therefore continue with a two-dimensional model and
assume A ¼ W2 ¼ D2

j .
To obtain a quantitative prediction for the jet deflection

and the critical speed Wekc, we need to evaluate pressure
ΔP on the upper and lower side of the liquid stream. The
free surfaces are subjected to the Laplace pressure which
can be integrated analytically along the jet. By contrast,
the pressure on the solid boundary is of hydrodynamic
(inertial) origin [1]: The bending of the streamlines creates
a depression inside the liquid and gives rise to an adhesive
force [5,7,8] (sometimes called the Coandă effect). One can

compute this dynamic pressure as −ρ
RDc=2þDj

Dc=2
½uðrÞ2=r�dr

based on the velocity uðrÞ inside the jet (with r the radial
coordinate). For our large cylinders (R̃ ≫ 1), we can
consider concentric circular streamlines with uðrÞ ∼ 1=r
[30]. This profile differs notably from the inviscid flow
around a sharp bend (R̃ ≪ 1) which approaches uðrÞ ∼
r−1=2 [7,8], and hence, our analysis is expected to be valid
only for R̃≳ 1.
The above formulation allows a parameter-free calcu-

lation of the sticking transition (see Supplemental Material
[18]) resulting in Eqs. (S9) and (S10) in the Supplemental
Material [18]. Importantly, by numerically solving for the
jet deviation α, we for the first time provide a theory that
captures the emergence of a minimal speed Wekc for flow
separation: The momentum balance admits two branches of
solutions both observed in the experiments that annihilate
through a saddle node bifurcation at Wekc and α ¼ 180°,
in close agreement with experiments (see Supplemental
Material [18]). The prediction for α is plotted in Fig. 4(d)
without any adjustable parameters. For small cylinders
(R̃≲ 5), the calculated deviation angles quantitatively
match the experimental data, while for larger R̃ the agree-
ment is only qualitative. Finally, the model resolves how
the critical speed depends on all the parameters of the
problem. The value of Wekc can be computed analytically
through an asymptotic expansion around the critical point
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FIG. 4. (a) Top view of a typical experiment (Dj ¼ 0.5 mm,
glass cylinder Dc ¼ 10 mm, Q ¼ 0.77 mL=s, ψ0 ¼ 91.5°).
(b) Sketch of the 2D model defining the geometric parameters.
The control volume for which we consider the momentum
balance is indicated by the red dashed line. (c) Jet deviation
angle α as a function of the Weber number We for different
inclination angles ψ0 and dimensionless cylinder radii R̃ ¼
Dc=ð2DjÞ (glass, θ ¼ 32� 15°). (d) Same data plotted as a
function of the parallel Weber number Wek ¼ We sin2ðψ0Þ.
Dashed lines are results from our (parameter-free) theory
[Eqs. (S9) and (S10) in the Supplemental Material [18] ].
(e) Critical Weber number Wekc as a function of R̃ð1þ cos θÞ.
All experimental parameters (Dj, Dc, θ, and ψ0) are varied. The
purple solid curve is the full numerical solution [Eqs. (S9) and
(S10) in the Supplemental Material [18] ] (the gray area repre-
sents the variations as θ is varied from 0° to 179°). The black
dashed line is the asymptotic expansion in the large R̃ limit.
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(see Supplemental Material [18]), and for R̃ ≫ 1 it reveals
that Wekc ≈ 4þ R̃ð1þ cos θÞ. We plot in Fig. 4(e) Wekc as
a function of R̃ð1þ cos θÞ for all our data (differentDj,Dc,
ψ0, and θ), the full numerical solutions of the model for all
possible R̃ and θ (solid curve with gray area), and the
asymptotic analytical solution (dashed line). Both the data
and the full model collapse, indicating that this simple
scaling is able to capture the physics of the teapot effect.
Our result captures both the wettability dependence ð1þ
cos θÞ already observed [1,2], as well as the linear depend-
ence on the solid curvature R̃; it therefore settles the
discussion of whether the dependence of the critical speed
on the radius of the jet should be quadratic (Duez et al. [1])
or linear (Dong et al. [2]). Quantitatively, the slope of the
linear dependence is roughly a factor 2 off [Fig. 4(e)],
which we attribute to the simplifying geometric assump-
tions of the jet’s cross section. Calculating the full geometry
of the jet goes well beyond the scope of the present
contribution as we expect it to be possible only through
computational fluid dynamic simulations [11].
In summary, we have studied the sticking of inertial-

capillary flows to solids, also known as the teapot effect, by
grazing vertical cylinders with liquid jets. We have shown
that unlike in the pouring configuration, once the jet com-
pletely sticks to the solid in our setup, it forms a liquid helix
whose intricate shape depends on the jet initial speed and
geometry. We have then looked at the adhesion itself and
how it impacts the jet when it still separates from the
cylinder. Using a detailed momentum balance on the rivulet
or jet, we have been able to accurately recover the observed
trajectory of our liquid helices using a single fitting para-
meter. Moreover, we have improved the inertial-capillary
adhesion scaling analysis and derived a parameter-free
model that, for the first time, predicts the sticking transition
and captures experimental observations semiquantitatively.
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