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A general scheme to get insight and to control postcollision interaction (PCI) by means of sequential
double ionization with two high-frequency pulses is discussed. In particular, we propose to consider PCI of
a slow photoelectron released by the pump pulse from a neutral atom with a fast photoelectron released by
the time-delayed probe pulse from the created ion. This scheme is exemplified by the ab initio calculations
performed for the prototypical helium atom. In order to visualize PCI effects in real time and real space, the
corresponding time-dependent Schrödinger equation is solved by propagating two-electron wave packets
in terms of essential stationary eigenstates of the unperturbed Hamiltonian. It is demonstrated that the
exchange of energy between the slow and fast photoelectron wave packets in continuum, as well as the
recapture of threshold photoelectrons owing to the PCI, can be controlled by the properties of the ionizing
pulses and the time delay between them.
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Postcollision interaction (PCI) is a general effect of the
exchange of energy between a slow primary electron
released from a system and a fast secondary electron
emitted by the decay of the created ion [1,2]. This effect
can be considered as a special case of the long-range
Coulomb interaction, and it provides fundamental infor-
mation on the correlated dynamics of the unbound elec-
trons in continuum. Since the early 1960s, PCI has been a
subject of numerous experimental and theoretical studies
(for more details on early studies of PCI, see Ref. [1] and
Chap. 4.3.4 in the review Ref. [2]). A traditional scheme to
study PCI is to consider the inner-shell photoionization of
an atom which is followed by the Auger decay of the
created core hole. Here, the interaction between a high-
energy Auger electron and a slow photoelectron (i) results
in equivalent energy shifts of the maxima of the photo-
electron and Auger electron lines in two opposite direc-
tions, (ii) changes the shape of both electron spectra, and
(iii) induces the recapture of the threshold photoelectrons
by the ion into bound states. Because of its importance for
our understanding of the electronic structure of matter, this
effect is the subject of many studies up to now (see, e.g.,
recent works on PCI in the Auger decay of atoms [3–5],
molecules [6], dimers [7,8], and clusters [9], as well as on
PCI in the two-electron decay [10] and on the field-assisted
PCI [11,12]).
Classically, a PCI in inner-shell photoionization can be

interpreted as a sudden change in the mutual screening of
the outgoing electrons [13,14]. In particular, at the instant
of the emission of the Auger electron, it sees a doubly
charged ion, while the photoelectron experiences an
attraction of a singly charged ion. After the fast Auger
electron outstripped the slow photoelectron, this picture
changes, and the photoelectron shields now a doubly

charged ion for the Auger electron. As a consequence,
the Auger electron gains energy and the photoelectron loses
the same amount of energy. The energy gain or loss
depends on the distance to the nuclei r0 where two
electrons met, and it can be estimated in atomic units as
ΔE ≃ 2=r0 − 1=r0 ¼ 1=r0. In addition to this simplified
classical picture, there are semiclassical approaches
[15,16], the stationary quantum theory of final-state inter-
action of continuum electrons [17], the time-dependent
perturbation theory [18], and a two-step dynamical launch
model [19]. However, none of the available models of PCI
[20] provide an exact and full quantum dynamical picture
of the effect. Finally, the lifetime of the decay and the
kinetic energy of the fast Auger electron are inherent
properties of the system, which are hard to manipulate.
Therefore, the kinetic energy of a slow photoelectron is
the only free parameter to control PCI in the traditional
scheme.
Here, we propose a more flexible and general scheme

to investigate and to control PCI effects by two high-
frequency, pump and probe, pulses. The process under
investigation is schematically illustrated in Fig. 1 on the
example of a helium atom. For simplicity, we consider
the sine-squared pulses with the time envelope giðtÞ ¼
sin2ðπt=TiÞ, which has a well-defined beginning, end, and
full duration Ti. The pump pulse with the carrier frequency
ω1 ionizes the neutral He atom from its ground state and
produces slow photoelectrons with the kinetic energy of
ε1 ¼ ω1 − IP (where IP stands for the ionization potential).
After the time delay τ, the probe pulse with the carrier
frequency ω2 ionizes the Heþ ion and produces fast
photoelectrons with the kinetic energy of ε2 ¼ ω2 − DIP
(where DIP stands for the double-ionization potential). In
this scheme, PCI effects in the coincidence spectrum of two
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photoelectrons can be controlled by means of many degrees
of freedom, i.e., by the parameters T1, ω1, T2, ω2, τ, and the
pulses’ polarization. Importantly, high-frequency pulses
required for such experiments can be produced by the
high-order harmonic generation (HHG) techniques [21,22].
At present, HHG techniques allow one to generate pulses
with carrier frequencies up to 110 eV (which is sufficient
to ionize ions), to access peak intensities of up to
5 × 1014 W=cm2, and to suppress pulse durations down
to subfemtoseconds.
In order to exemplify our idea, we performed full

quantum dynamical calculations for the prototypical two-
electron atom and visualized expected PCI effects in real
time and real space. For this purpose, we solved the time-
dependent Schrödinger equation for a He atom exposed to
the linearly polarized pump and probe pulses (both polar-
ized along the z axis). In the dipole velocity gauge, the total
Hamiltonian of the system reads (in atomic units)

Ĥðr⃗; r⃗0; tÞ ¼ −
1

2
∇⃗2 −

1

2
∇⃗02 −

2

r
−
2

r0
þ 1

jr⃗ − r⃗0j
− ið∇z þ∇z0 Þ½A1g1ðtÞ sinðω1tÞ
þA2g2ðtÞ sinðω2tÞ�: ð1Þ

Here, Ai are the vector potential amplitudes (the vector
potential is related to the electric field via E ¼ −∂tA).
An exact solution of the problem at hand including all

processes evoked by two pulses is a formidable task, even
for a He atom. Therefore, in order to describe PCI effects as
accurately as possible, we restricted our consideration to
the essential processes only. In particular, we allowed for
the one-photon ionization of the neutral He by the pump
pulse and for the subsequent one-photon ionization of the

created Heþ ion by the probe pulse. We, therefore,
neglected the other possible processes, such as (i) the
absorption of several photons from one of the pulses and
(ii) the ionization of the neutral He atoms (which survive
after the pump pulse) by the probe pulse. In order to justify
approximation (i), we reduced intensities of the pump and
probe pulses and ensured linear regimes in each of the
ionization steps. In particular, only a small fraction of
around 1% of the neutral He atoms was ionized by the
pump pulse, and only a small fraction of around 1% of the
created Heþ ions was further ionized by the probe pulse.
Thus, the essential two-photon absorption process forms a
coincident spectrum which yields about 0.01% of all
events. Thereby, the weak multiphoton processes (i) do
not interfere with the essential process. Finally, the rather
probable one-photon–one-electron ionization process
(ii) does not interfere with essential events at all.
In the present work, we solved the time-dependent

Schrödinger equation with the total Hamiltonian (1) in
terms of the stationary eigenstates of the unperturbed
Hamiltonian of helium by implying the following ansatz
for the total wave function:

Ψðr⃗; r⃗0; tÞ ¼ aϵ0ðtÞΦϵ0ðr⃗; r⃗0Þ þ
X
ϵ0
bϵ0 ðtÞΦϵ0 ðr⃗; r⃗0Þ

þ
X
ϵ

cϵðtÞΦϵðr⃗; r⃗0Þ: ð2Þ

As justified above, this ansatz includes only selected
relevant eigenstates which are essential to follow the
dynamics of PCI in the considered process. In particular,
it includes the wave function Φϵ0 of the neutral ground
state with the energy ϵ0 ¼ Eð1s2Þ, the singly excited or
ionized states Φϵ0 from the energy interval of ϵ0 ¼
Eð1s2Þ þ ω1 � 5 eV, and the doubly excited or ionized
states Φϵ from the energy interval of ϵ ¼ Eð1s2Þ þ ω1 þ
ω2 � 5 eV [indicated in Fig. 1(b) by hatched rectangles].
The spatial parts of the stationary wave functions of He

with well-defined total orbital angular momentum L, its
projection M ¼ 0, and total spin S ¼ 0 were sought in the
two-particle basis of symmetrized pair-products of all one-
particle basis functions [note that Hamiltonian (1) preserves
the total spin S and projection M of the 1S ground state of
He]. The one-particle basis was built in a box via the three-
dimensional finite-element discrete-variable representation
[23–26] employing the normalized Lagrange polynomials
constructed over a Gauss-Lobatto radial grid [27–29]. This
choice has the following advantages. First, all matrix
elements of the Hamiltonian (1) have closed analytic
expressions, which can be found in our previous works
[24,25]. Second, the Hamiltonian matrix splits in blocks
according to the total angular momentum L. Third and
important, the chosen basis results in a banded structure of
the total Hamiltonian, such that about 99.9% of all matrix
elements are zeros.

FIG. 1. (a) Scheme of the double ionization of He by the
sequenceof twodelayedhigh-frequencypulses. (b)Energy scheme
of the process. The pump pulse of the duration T1 and carrier
frequencyω1 promotes one of the two electrons ofHe into the near-
threshold continuum, generating thereby slow photoelectrons with
the kinetic energy of around ε1 ¼ ω1 − IP. After a time delay τ, the
probe pulse of the duration T2 and sufficient carrier frequency ω2

ionizes theHeþ ion and generates fast photoelectrons of the energy
of ε2 ¼ ω2 − DIP. The neutral ground state Heð1s2Þ, the singly
excited or ionized states centered around the energy Eð1s2Þ þ ω1,
and the doubly excited or ionized states centered around the energy
Eð1s2Þ þ ω1 þ ω2 (both marked by the horizontal hatched rec-
tangles) are essential for the considered process.
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The matrix of the unperturbed Hamiltonian of He,
constructed in the described-above two-particle basis,
was diagonalized by the FEAST solver package [30,31],
which provides accurate eigenstates of sparse matrices
within a given interval of eigenvalues. In the calculations,
we used the box size of 500 a.u., which was divided into
200 finite elements with the length of 2.5 a.u., each covered
by ten Gauss-Lobatto points. The one-particle basis
included partial harmonics with l; jmj ≤ 3. In the weak-
field limit, the ionization of the Φϵ0ð1SÞ ground state of He
by the pump pulse populates the singly ionized states
Φϵ0 ð1PÞ. The subsequent ionization of those states by the
probe pulse produces manyfold of the doubly ionized states
Φϵð1S=1DÞ. One can independently search for the Φϵ0 ð1PÞ
solutions in the required energy interval of ϵ0 ¼ Eð1s2Þ þ
ω1 � 5 eV and separately for theΦϵð1SÞ and for theΦϵð1DÞ
solutions in the interval of ϵ ¼ Eð1s2Þ þ ω1 þ ω2 � 5 eV.
The present calculations yield the following energies

of the ground neutral and ionic states of He: Eð1s2Þ ¼
−2.9033 a:u: and Eð1s1Þ ¼ −2.0000 a:u: Thereby, the
theoretical IP ¼ 24.58 eV and DIP ¼ 54.42 eV are in very
good agreement with the experimental values of 24.59 and
54.42 eV [32], respectively. In all dynamical calculations,
the carrier frequencies of the pump and probe pulses were
set to ω1 ¼ 26.09 eV and ω2 ¼ 64.47 eV, respectively
[33]. Thereby, the maximum in the reference spectrum
of slow photoelectrons, computed for the ionization of
neutral He by the pump pulse only, was set to ε1 ¼ 1.5 eV,
and the maximum in the reference spectrum of fast
photoelectrons, computed for the ionization of the Heþ
ion by the probe pulse only, to ε2 ¼ 10 eV. The full
duration of the probe pulse was fixed to T2 ¼ 2 fs. In
order to demonstrate a possibility to control emerging PCI
effects, we used different pump pulses and time delays
between the pulses.
We first discuss the temporal evolution of the one-

electron radial density. As explained above, PCI effects
can be found in the coincident photoelectron wave packet,
which is described by the last term in the ansatz (2). The
required temporal evolution can thus be obtained via

Pðr; tÞ ¼ r2
Z

dΩr

Z
d3r⃗0

����
X
ϵ

cϵðtÞΦϵðr⃗; r⃗0Þ
����
2

: ð3Þ

The results of the present calculations, performed for the
pump pulse of full duration T1 ¼ 5 fs and two different
time delays of τ ¼ 1 and 3 fs, are summarized in Fig. 2.
We note that the coincident part of the ansatz (2) can
be populated only after the probe pulse has began at
t ¼ T1 þ τ, and its population is completed after the probe
pulse has ended at t ¼ T1 þ τ þ T2. Therefore, Fig. 2
follows free evolutions of the created two-electron wave
packets starting from the end of the probe pulse.
As one can see from Fig. 2, the early two-electron wave

packets (at 8 fs in the upper and at 10 fs in the lower panels)

consist of two humps. The slow photoelectrons, generated
at earlier times, are located at larger distances, and the
fast photoelectrons, generated at later times, at smaller. As
the time evolves, the wave packet of fast photoelectrons
runs after, passes through, and then overtakes the wave
packet of slow photoelectrons. At later times (16 fs in
the upper and 20 fs in the lower panels), the fast photo-
electrons are located at larger and the slow one at smaller
distances. The two wave packets meet at different places,
which can be controlled by the time delay τ. Indeed, they
meet at r ¼ 130 a:u: and t ¼ 10.5 fs for τ ¼ 1 fs (upper
panel in Fig. 2) and at r ¼ 180 a:u: and t ¼ 13.75 fs for
τ ¼ 3 fs (lower panel in Fig. 2). More details on the time
evolution of radial density can be found in Supplemental
Material [34].
We now analyze the coincident energy spectrum of the

photoelectrons. In order to follow the time evolution of the
spectrum, we project here the coincident spatial wave
packet on the Coulomb waves:

FIG. 2. One-electron radial density (3) computed for the double
ionization of He by the sequence of two high-frequency pulses at
different times (indicated near each curve). The pump pulse with
duration T1 ¼ 5 fs and carrier frequency ω1 ¼ 26.09 eV gen-
erates slow photoelectrons with the kinetic energy of around
ε1 ¼ 1.5 eV, while the probe pulse with T2 ¼ 2 fs and ω2 ¼
64.47 eV creates fast photoelectrons with ε2 ¼ 10 eV. Right
after the second pulse has ended, the wave packet of slow
photoelectrons is located at somewhat larger distances, while that
of the fast photoelectrons at smaller distances. As the time
proceeds, the fast photoelectrons overtake the slow ones.
Depending on the time delay between two pulses, the two wave
packets meet at different distances: at about 130 a.u. for τ ¼ 1 fs
in the upper panel and at about 180 a.u. for τ ¼ 3 fs in the lower
panel. As a consequence, two electrons exchange by different
portions of energy via PCI.
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Wðk⃗; k⃗0; tÞ ¼ 1
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where ψ−
Cðk⃗; r⃗; ZÞ are the incoming-wave momentum-

normalized superpositions of the spherical Coulomb waves
[35]. Equation (4) ensures that photoelectrons which are
located closer to the nucleus are projected on the Coulomb
waves with Z ¼ 2, and those located farther to the
nucleus on the waves with Z ¼ 1. For instance, in the
early coincident spectrum at the very beginning, the wave
packets of slow photoelectrons are projected on Coulomb
waves with Z ¼ 1, and those of fast photoelectrons on the
waves with Z ¼ 2. On the contrary, the final coincident
spectrum is obtained by projecting the wave packets of
slow electrons on Coulomb waves with Z ¼ 2, and those of
fast electrons on the waves with Z ¼ 1.
Figure 3 demonstrates electron energy spectra obtained

for the final two-electron wave packets shown in Fig. 2.
Those one-electron spectra were obtained from the coinci-
dent spectrum (4) via the following projection:

Wðε; tÞ ¼ k
Z

dΩk

Z
d3k⃗0Wðk⃗; k⃗0; tÞ; ð5Þ

with the electron kinetic energy ε ¼ k2=2. The reference
spectra of slow and fast photoelectrons, computed for each
pulse separately, are also shown for comparison. Those
reference spectra coincide with the one-electron spectra
obtained from the early coincident spectrum, where wave
packets of slow electrons are projected on Coulomb waves
with Z ¼ 1, and those of fast electrons on waves with Z ¼ 2.
One can see from Fig. 3 that the maximum of the final
spectrum of slow photoelectrons systematically shifts
towards lower kinetic energies, while that of the spectrum
of fast photoelectrons toward higher energies, as compared
to the respective reference spectra. The energy shifts are
larger (smaller) if the wave packets meet at smaller (larger)
distances. The present results agreewith the classical estimate
via the ΔE ≃ 1=r0 formula. Indeed, the energy shifts of
�0.21 and�0.15 eV, observed for the time delays τ ¼ 1 and
3 fs at the maxima, suggest that the wave packets meet at
about 130 and 180 a.u., respectively. Since different parts of
the coincident wave packet meet at different distances, PCI
results in notable deformations of the shape of each spectrum.
Complete time-evolutions of the photoelectron spectra from
Fig. 3 can be found in the Supplemental Materials [34].
Let us, finally, have a closer look at the threshold part of

the spectrum of slow photoelectrons in Fig. 3. Owing to
substantial losses of energy caused by PCI, a part of
the very slow photoelectrons acquired negative kinetic
energies. In other words, they became recaptured to bound
states of the Heþ ion. As one can see from Fig. 3, the effect
of recapture is different for different time delays τ.

FIG. 3. Final photoelectron spectra (5) of He computed for the
combinations of two pulses with T1 ¼ 5 fs, ω1 ¼ 26.09 eV and
T2 ¼ 2 fs, ω2 ¼ 64.47 eV and two different time delays τ ¼ 1
and 3 fs (see the legend). The spectrum of slow electrons
computed for the ionization of He by the pump pulse only (with
the maximum at ε1 ¼ 1.5 eV) and the spectrum of fast electrons
computed for the ionization of the Heþ ion by the probe pulse
only (with the maximum at ε2 ¼ 10 eV) are shown for reference.
The inset illustrates the maximum of the spectrum of fast
electrons on an enlarged scale. One can see that PCI results in
the exchange of energy between the slow and fast electrons, such
that the energy of slow electrons decreases and that of the fast
increases. For time delays τ ¼ 1 and 3 fs, the energy shifts of
about �0.21 and �0.15 eV suggest that two wave packets meet
at about 130 and 180 a.u., respectively (see also Fig. 2 and its
caption).

FIG. 4. Final spectra (5) of slow photoelectrons computed for
the ionization of He by different combinations of two pulses with
ω1 ¼ 26.09 eV, ω2 ¼ 64.47 eV, and time delay τ ¼ 1 fs. The
second pulse has duration T2 ¼ 2 fs, while the first one T1 ¼ 4 or
5 fs (see the legends). The respective spectra of slow electrons
computed for the ionization of He by the first pulse only (with the
maximum at ε1 ¼ 1.5 eV) are shown for reference. As is clearly
seen from the computed spectra at ε1 ≈ 0, a part of the threshold
photoelectrons (indicated in percent in each legend) is recaptured
by the doubly charged ion to produce bound states of the singly
charged ion, which is owing to the PCI with fast photoelectrons.
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Obviously, the effects of recapture can also be controlled by
other parameters. Figure 4 illustrates this fact for two
different durations T1 ¼ 4 and 5 fs of the pump pulse,
while the time delay τ ¼ 1 fs and duration of the probe
pulse T2 ¼ 2 fs were kept fixed. One can see that a
significantly larger portion of about 2.3% of the threshold
photoelectrons is recaptured for the shorter pump pulse, as
compared to 0.5% for the longer (compare also each final
spectrum with the respective reference spectrum).
In conclusion, we propose to study PCI effects by experi-

ments on a double ionization of atomswith two delayed high-
frequency pulses and exemplify our suggestion by the full
dynamical calculations for helium. In contrast to the tradi-
tional scheme involving photoelectrons and Auger electrons,
thewavepackets of twophotoelectrons are emitted coherently
whichopens a playground for new interference effects, e.g., in
the angular correlation [3,19,36] of the entangled photo-
electrons. The theoretically demonstrated possibility to
manipulate PCI by the durations, carrier frequencies, and
time delay of the pump and probe pulses opens a door to the
diverse control of such coherent PCI effects in experiments at
present HHG facilities. Our ab initio theoretical approach,
which relies on the quantum dynamical propagation of
two-active-electron wave packets, can straightforwardly be
extended to atoms with more electrons. It substantially
advances the theory of PCI beyond available theoretical
models and allows one to follow the temporal evolution of
highly differential coincident observables. As an illustration,
Supplemental Material [34] includes animations: (i) how fast
photoelectrons emitted in a particular direction penetrate
through the density of slow photoelectrons and (ii) how the
density of fast photoelectrons scatters on slow photoelectrons
emitted in a particular direction. Those animations demon-
strate an intricate patterning of the photoelectron density
evoked by the coherent scattering processes.
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