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The first laser spectroscopic determination of the change in the nuclear charge radius for a five-electron
system is reported. This is achieved by combining high-accuracy ab initio mass-shift calculations and a
high-accuracy measurement of the isotope shift in the 2s22p 2P1=2 → 2s23s 2S1=2 ground state transition in
boron atoms. Accuracy is increased by orders of magnitude for the stable isotopes 10;11B and the results are
used to extract their difference in the mean-square charge radius hr2ci11 − hr2ci10 ¼ −0.49ð12Þ fm2.
The result is qualitatively explained by a possible cluster structure of the boron nuclei and quantitatively
used to benchmark new ab initio nuclear structure calculations using the no-core shell model and Green’s
function Monte Carlo approaches. These results are the foundation for a laser spectroscopic determination
of the charge radius of the proton-halo candidate 8B.
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Introduction.—The lightest elements play an exceptional
role for the advancement of nuclear and atomic physics:
Only here theoretical approaches are sufficiently advanced
to calculate both electronic and nuclear structure from first
principles. Laser spectroscopy provides unique bench-
marks to test and further advance those models of the
fundamental structure of nature. For hydrogenlike systems,
atomic theory is sufficiently accurate to calculate transition
frequencies including quantum electrodynamic (QED)
corrections to such a precision that the mean-square nuclear
charge radius hr2ci can be extracted. This has been dem-
onstrated for hydrogen [1], muonic hydrogen [2], and
muonic deuterium [3]. But already for two-electron sys-
tems this is so far not feasible even though first progress
towards this goal has been reported [4]. However, calcu-
lating the mass-dependent isotope shift δνA;A

0
MS between two

isotopes A and A0 in an optical transition has the advantage
that all mass-independent contributions and their related
uncertainties cancel. This allows us to isolate the small
portion of the isotope shift that is caused by the change in
the mean-square nuclear charge radius δhr2ci between
isotopes as outlined in Ref. [5]. A few experiments have
already utilized this technique to obtain nuclear charge radii
of stable and short-lived isotopes of He [6,7], Li [8,9], and
Beþ [10,11], based on corresponding mass-shift calcula-
tions in two- and three-electron systems [12–15].
Here, we report the first application of this technique

to the five-electron system of atomic boron. We present

high-precision calculations of the mass shift and the field-
shift factor required to extract the difference in mean-
square nuclear charge radius δhr2ci between the two stable
boron isotopes 10;11B and a measurement of the isotope shift
using resonance ionization mass spectrometry on a thermal
atomic beam. The results are compared to new ab initio
nuclear structure calculations.
Isotope shift calculations.—The isotope shift is com-

posed of the mass shift (MS) and the field shift (FS) δνIS ¼
δνMS þ δνFS, where the latter δνFS ¼ Cδhr2ci contains the
information on the charge radius difference. To obtain
δνMS with the required high accuracy we calculate the shift
due to the finite nuclear mass in powers of the fine structure
constant α. Namely, the atomic energy levels are considered
as a function of α, which is expanded in a power series

EðαÞ ¼
X
n

EðnÞ; EðnÞ ∼mαn; n ¼ 2; 4; 5; 6;…:

ð1Þ

These expansion coefficients are calculated including finite
nuclear mass effects, but neglecting the nuclear spin, which
gives rise to a hyperfine splitting but does not shift the
energy levels in first order.
The leading term Eð2Þ is the eigenvalue of the non-

relativistic Hamiltonian in the center-of-mass system. This
Hamiltonian is used to obtain the nonrelativistic wave
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function Ψ using the variational approach, where it is
expressed in the form of K-term linear combinations of the
five-electron basis functions ψ lðr⃗Þ

Ψðr; σÞ ¼ Â
�
ΞS;MS

ðσ⃗Þ
XK
l¼1

clψ lðr⃗Þ
�
: ð2Þ

The operator Â ensures the antisymmetry of the total
wave function with respect to the exchange of the
electrons. The ΞS;MS

ðσ⃗Þ is an n-electron spin eigenfunc-
tion with the quantum numbers S and MS, and σ⃗ and r⃗
are the n-electron vectors in spin and coordinate space.
The spatial basis functions are the five-electron explicitly
correlated Gaussian (ECG) functions of S and P sym-
metry, respectively:

ψ lðr⃗Þ ¼ exp

�
−
X
a>b

cabðr⃗a − r⃗bÞ2
�
; ð3Þ

ψ⃗ lðr⃗Þ ¼ r⃗a exp

�
−
X
a>b

cabðr⃗a − r⃗bÞ2
�
; ð4Þ

with r⃗a being the coordinate of the ath particle (electrons
and the nucleus). The linear parameters cl are obtained by
the standard inverse iteration method. The nonlinear
parameters cab are determined variationally for each basis
function in an extensive optimization of the nonrelativistic
energy Eð2Þ with progressively doubled size from K ¼
1024 to K ¼ 8192 terms [16]. The final nonrelativistic
energy is obtained by extrapolation to the infinite basis
with a small uncertainty due to the dependence on the
extrapolation function.
The obtained nonrelativistic wave functions are then

used for further perturbative calculations of relativistic and
QED contributions using the respective Hamiltonians.
Finite nuclear mass terms of the nonrelativistic energy
are treated up to ðm=MÞ2 and those of higher order in α up
to m=M. Accordingly, Eð4Þ ¼ hΨjHð4ÞjΨi is calculated
using the relativistic Hamiltonian Hð4Þ and the nonrelativ-
istic wave function Ψ. The similar calculation for the
leading QED correction Eð5Þ ¼ hΨjHð5ÞjΨi can be found
in the Supplemental Material [17]. At present, a complete
numerical evaluation of Eð6Þ correction for a five-electron
system is unfeasible, as the full calculation of Eð6Þ has been
performed only for one- and two-electron systems [18,19].
Based on this experience, the Eð6Þ term is estimated using
its dominating contribution built of the leading one-electron
terms which are proportional to the contact term δ3ðraÞ.
No higher order terms are needed here, since the related
uncertainty is much smaller than the one from Eð4Þ.
Following the convention introduced for EðnÞ, formulas
for related contributions to the transition energy ν between
the atomic states X and Y and to the mass shift between
the isotopes can be written as

νðnÞðX → YÞ ¼ EðnÞðYÞ − EðnÞðXÞ; ð5Þ

δðnÞνMS ¼ νðnÞð11BÞ − νðnÞð10BÞ; ð6Þ

and are summarized in Table I. To determine the field shift
factor C we consider the leading rc-dependent correction

Eð4Þ
fs ¼ 2π

3
Zαhr2ci

X
a

hδ3ðraÞi ¼ Cð4Þhr2ci ð7Þ

and the logarithmic relativistic correction to the wave
function at the origin

Eð6Þ
fs;log ¼ −ðZαÞ2 lnðZαmhr2ciÞEð4Þ

fs ≈ Cð6Þ
loghr2ci: ð8Þ

Our recommended value for the constant C is obtained as

a sum of two components CA ¼ Cð4Þ
A þ Cð6Þ

log;A and an
arithmetic average over the isotopes C ¼ ðC11 þ C10Þ=2.
The remaining term ðC11 − C10Þðhr2ciA þ hr2ciA0 Þ=2 is as
small as the neglected relativistic α4m3=M2 corrections and
is therefore also neglected. The uncertainty of the constant
C given in Table I is due to neglecting a nonlogarithmic
relativistic correction, which is known only for hydrogenic
systems and is conservatively assumed to be 50% of the
logarithmic correction.
Experiment—Resonance ionization spectroscopy was

performed in the two-step ionization scheme

2s22p 2P1=2⟶
λ1

249.75 nm
2s23s 2S1=2⟶

λ2

<371 nm
Bþ þ e− ð9Þ

of neutral boron on a thermal atomic beam. The exper-
imental setup is shown in Fig. 1. Stable boron atoms are
emitted towards a laser ionization region from a graphite
tube filled with amorphous boron powder. The apertures
along this path limit the angular spread of the atomic beam
to 2 mrad.
For laser excitation and ionization two single-mode

continuous-wave laser systems are used: A titanium-
sapphire (Ti:sapphire) laser is generating light output at
approximately 1000 nm and is frequency quadrupled in
two ring cavities to generate the resonance transition

TABLE I. Components of the isotope shift δνIS ¼ νð11BÞ −
νð10BÞ in the 2p 2P1=2 → 3s 2S1=2 transition of the boron atom.

Component Value (MHz)

mα2 −5027.27 � 0.03
mα4 4.78 � 0.07
mα5 −0.572 � 0.005
mα6 þ0.058 � 0.002

Total −5023.00 � 0.08
C ðMHz=fm2Þ 16.91 � 0.09
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wavelength of λ1 ¼ 249.75 nm. The Ti:sapphire frequency
is scanned stepwise during the experiment, and stabilized
against short-term fluctuations via an optical reference cavity
at each measurement point. A frequency comb is employed
to monitor long-term drifts of the reference cavity. The
output power of the resonant laser is kept below 1 mW to
avoid power broadening and to limit ionization by the
resonant laser light. For nonresonant ionization, the second
harmonic of a Nd:YAG laser is externally frequency doubled
to λ2 ¼ 266 nm providing a minimum power of 500 mW.
At resonance, the tunable laser excites boron atoms to the 3s
state from where they are ionized dominantly by absorption
of a photon from the ionization laser. Generated ions are
guided electrostatically into a quadrupole mass spectrometer
(QMS) for mass separation and single-ion detection at low
background using a channeltron detector. The data acquis-
ition system records the number of detected ions as a
function of the frequency of the resonant laser.
After the two overlapped laser beams intersect the atomic

beam once at an angle α ¼ π=2þ δα, they are backre-
flected from a mirror outside the vacuum chamber and
overlapped with an uncertainty < 1 mrad to the incoming
laser beams. The laser frequency is scanned and stabilized
in steps of 8 to 10 MHz covering the atomic hyperfine
structure (hfs). For each frequency step two measurements
are taken: One with the retroreflected beam present [double
pass (DP)] and one with the reflected beam blocked by a
remote-controlled shutter placed in front of the reflecting
mirror [single pass (SP)]. Thus, in DP mode, the super-
posed spectra of two hfs is recorded, which are offset by
ΔνDP ∼ 2δα due to the Doppler shift in opposite directions
for each pass.

The SP spectra of 11B and 10B are taken under identical
ambient and spatial conditions, the transition frequency
centroids are nevertheless Doppler shifted with different
magnitudes due to their difference in the mass-dependent
mean velocity v̄ inherited by the thermal source. The size
of this effect can be determined from ΔνDP and scaled
with the relative difference in thermal velocity dv ¼
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð11BÞ=mð10BÞ

p
. The isotope shift between the stable

isotopes can therefore be calculated as

δνIS ¼ νSPð11BÞ − νSPð10BÞ þ
ΔνDPð11BÞ

2
dv; ð10Þ

where νSPðABÞ are the respective Doppler-shifted transition
centroids from the single-pass spectra of 11B and 10B.
With this approach, the determination of the isotope shift
depends mainly on the parameters extracted from single-
pass spectra, which exhibit much smaller systematic and
statistical uncertainties.
SP spectra are fitted using Voigt profiles with shared

widths for all hfs components. The Lorentzian part was
fixed to the natural linewidth of 40.1 MHz. A Gaussian
component of ≈100 MHz was obtained in accordance with
the atoms thermal and angular spread. To reduce the
number of degrees of freedom in the DP fit, the hfs factors
are fixed to their literature value for the 2p state [20] and
the values extracted from the SP fit for the 3s level. It is
assumed that the peaks recorded in both directions all share
the same width but have different relative amplitude due to
power losses and beam diameter differences after retrore-
flection. The relative single peak intensities were left free in
the SP fit but fixed to these extracted values in the DP fit.
One transition centroid for the DP spectra was fixed to the
value from the single pass. With these constraints, the fit of
the double-pass spectra converged reliably. An example
dataset with the respective fit results is shown in Fig. 2.

FIG. 1. Experimental setup: A Sirah Matisse 2 cw laser system is
generating 250 nm light via two second harmonic generation
(SHG) ring cavities (Spectra Physics Wavetrains) while being
monitored with a Menlo FC1500 frequency comb and a High-
Finesse wave meter. The laser beam is superimposed perpendicular
with a thermal atomic beam of boron and backreflected for a
second pass through the interaction region. A second laser system,
consisting of a Coherent Verdi V8 and another Wavetrain is used
for nonresonant ionization of the excited atoms. Ion detection after
mass selection in a quadrupole mass spectrometer (QMS) is
performed with a channeltron detector.

FIG. 2. Left: A double-pass spectrum of 11B. The DP fit
converges with all parameters of the first pass (except for the
overall height) fixed to the parameters of the SP fit, which is not
shown. The two individual structures which are superposed can
then be reconstructed from the fit results. Right: The correspond-
ing SP dataset and fit for 10B.
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The statistical average from all datasets, taken at differ-
ent δα and including their systematic uncertainties, yields
δνIS ¼ −5031.3ð2.0Þ MHz. Table II lists previous mea-
surements of this isotope shift as well as our theoretical and
experimental results. None of the previous publications
denotes the isotope shift explicitly but report transition
frequencies of the two isotopes with respective uncertain-
ties. The influence of correlated uncertainties in the
calculation of δνIS is therefore unknown and Gaussian
error propagation was used. Our value agrees within 1.3σ
with the most recent value obtained by Johansson [21] but
has about 2 orders of magnitude higher accuracy. It is close
to the calculated mass shift of −5023.00ð8Þ MHz and the
difference of −8.3ð2.0Þ MHz can be attributed to the finite-
size effect. This corresponds to δhr2ci ¼ hr2ci11 − hr2ci10 ¼
−0.49ð12Þ fm2 taking the calculated field shift factor C ¼
16.91ð9Þ MHz=fm2 into account. At first glance it might
seem counterintuitive that the charge radius of 10B is larger
than that of 11B, but it is well in line with similar results in
the lithium and beryllium chains [8–11]. There, a minimum
of the charge radius has been observed at N ¼ 6 and was
attributed to the cluster structure of the lighter nuclei.
Similar arguments can also be used for boron: 9B is
unbound since it consists of two α clusters and an addi-
tional proton that does not support binding of the two α’s
like the neutron does in 9Be. The αþ αþ d structure of 10B
is expected to have a rather large charge radius and the
decrease towards 11B would be analogous to the decrease of
δhr2ci ¼ −0.734ð40Þ fm2 from 6Li (αþ d) to 7Li (αþ t)
[22], which is indeed of similar size. Apart from these more
empirical arguments we compare the extracted change of
the charge radius to new ab initio calculations of the stable
boron isotopes.
Nuclear structure theory.—We employ two state-of-the-

art ab initio nuclear structure methods, the no-core shell
model (NCSM) and the Green’s function Monte Carlo
(GFMC) approach, to compute the charge radii of 10B
and 11B.
For the NCSM we use different two-nucleon (NN) and

three-nucleon (3N) interactions from chiral effective field
theory: (a) the N2LO-SAT interaction with NN and 3N

interaction at N2LO with flow parameter α ¼ 0.08 fm4

[25]; (b) the NN interaction at N3LO by Entem and
Machleidt [26] supplemented with a 3N interaction at
N2LO with local regulator and reduced cutoff
(Λ3N ¼ 400 MeV=c, α ¼ 0.08 fm4) that has been widely
used in the past years [27–29]; (c) the Entem-Machleidt
NN interaction at N3LO with a new 3N interaction at
N2LO with nonlocal regulator (Λ ¼ 500 MeV=c, cD ¼
0.8, α ¼ 0.12 fm4); and (d) the recent NN interaction at
N4LO by Entem, Machleidt, and Nosyk [30] plus a 3N
interaction at N2LO with nonlocal regulator (Λ ¼
500 MeV=c, cD ¼ −1.8, α ¼ 0.16 fm4) [31]. Only (a) uses
information beyond the few-body sector and explicit
constraints on nuclear radii to determine the low-energy
constants. In all other cases the NN interaction is fitted
exclusively to two-nucleon scattering data and the 3N
interaction to the triton binding energy, the triton β-decay
half-life, or properties of the α particle. For all interactions
we employ a consistent similarity renormalization group
evolution up to the three-body level for the Hamiltonian
and up to the two-body level for the radius operator.
We have confirmed that the impact of variations of the
flow parameter α on the radii is much smaller than the
model-space convergence uncertainties. For each interac-
tion, large-scale NCSM calculations are performed for
model spaces from Nmax ¼ 2 to 10 using harmonic
oscillator frequencies ℏΩ ¼ 12; 13;…; 18 MeV. To extract
the nominal value and uncertainty for the point-proton
radius, we first identify the ℏΩ value that provides the most
stable radius as a function of Nmax and then use the
neighboring ℏΩ values and the residual Nmax dependence
to estimate the many-body uncertainties.
Green’s function Monte Carlo (GFMC) uses imaginary-

time projection techniques to solve for nuclear ground- and
excited-state energies at the 1% accuracy level for a given
Hamiltonian [32]. Here we employ the AV18þ IL7
Hamiltonian, containing the Argonne v18 NN potential
[33] and Illinois-7 3N potential [34,35]. The four param-
eters characterizing this 3N potential were fit to low-lying
nuclear spectra in the mass range A ¼ 3–10 and give an
excellent reproduction of approximately 100 ground- and
excited-state energies up to A ¼ 12. GFMC calculations
successfully predicted the charge radii of 6;8He isotopes,
while the Li and Be isotope radii tend to be a little smaller
than current experimental values [5].
While our calculated binding energies for 10B agrees well

with the experimental value, we slightly underbind 11B. To
remedy this shortcoming of the AV18þ IL7 interaction,
when computing the radius of 11B we slightly quench the
phenomenological repulsive term of the 3N force to
reproduce the experimental binding energy.
As in Refs. [36] and [5], the charge radii are derived from

the estimates for the point-proton radii taking into account
the finite size of the nucleons and the Darwin-Foldy
correction. The one-body spin-orbit correction of Ref. [5]

TABLE II. Isotope shift δνIS¼νð11BÞ−νð10BÞ in the 2p2P1=2→
3s2S1=2 transition of atomic boron. The calculated mass shift
listed in Table I is used to extract the field shift that is related to
the finite nuclear size.

Value (MHz) Reference

Isotope shift −5250 � 360 [23]
−4110 � 360 [24]
−5220 � 150 [21]
−5031.3 � 2.0 this work, expt.

Mass shift −5023.00 � 0.08 this work, theory
Field shift −8.3 � 2.0 extracted
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has been estimated in a variational Monte Carlo calculation;
it is found to be about 5 times smaller than the Darwin-Foldy
term in 11B, and to vanish in 10B, so it is neglected here. Two-
body terms in the charge operator have also been neglected in
this analysis, as their contribution was proven to be small in
the GFMC calculations of the 12C charge form factor [37].
Conclusion and outlook—The calculated radii of 11B

are plotted vs those of 10B from both NCSM and GFMC
calculations in Fig. 3. Our newly obtained value for
the difference in mean-square charge radius δhr2ci ¼
−0.49ð12Þ fm2 is depicted as a dotted line with gray
shaded uncertainty area. It improves the experimental
precision from electron scattering (result f) by at least a
factor of 5. Our value is used to benchmark ab initio nuclear
structure theory. Independent of the applied many-body
method and interaction, both NCSM (results a–d) and
GFMC (result e) predict values which are systematically
slightly smaller, but are consistent with the experimental
value for δhr2ci within uncertainties. Theoretical studies
with additional nuclear Hamiltonians and/or many-body
methods are warranted to determine if this difference with
experiment persists. Absolute values of the radii vary
with different interactions, which is partly correlated to a
variation of the ground-state energies of the two isotopes;
for the NCSM calculations with interaction (a) both iso-
topes are overbound by about 4 MeV compared to experi-
ment, while for interactions (b,c,d) they are all underbound
by about 4 MeV. For GFMC the ground-state energies are
reproduced by construction and tweaking the 3N potential
to match the experimental binding energies. For reference,
the calculated charge radii and ground state energies are

summarized in Table S1 of the Supplemental Material [17].
An improved absolute radius measurement of one of the
stable isotopes by electron scattering, coupled with these
precise charge radii differences, would be of great benefit
and a further test of the ab initio nuclear structure theory.
In summary, our result demonstrates that mass shift

calculations of 5e− systems are sufficiently advanced to
extract nuclear charge radii to benchmark state-of-the-art
nuclear theory. This will be used to determine the charge
radius of the proton-halo candidate 8B using collinear laser
spectroscopy [39].
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