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We report on an intriguing observation that the values of all the couplings in the standard model, except
those related to first two generations, can be understood from the IR fixed point structure of renormalization
group equations in the minimal supersymmetric model extended by one complete vectorlike family with
the scale of new physics in a multi-TeV range.
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Introduction.—Out of 17 dimensionless couplings of
the standard model (SM) only seven are sizable: the three
gauge couplings of the SUð3Þ × SUð2Þ × Uð1Þ symmetry,
the top, bottom, and tau Yukawa couplings leading to
masses of third generation fermions and the Higgs quartic
coupling inferred from the Higgs boson mass. The next
largest coupling, the Yukawa coupling of the charm quark,
is less than 1% of the top Yukawa coupling.
The origin of the SM parameters is an open question.

Larger or additional symmetries at a high scale can provide
relations between some of the couplings as, for example,
in grand unified theories (GUT) or models with family
symmetries. Alternatively, the structure of the renormali-
zation group (RG) equations of a given model may lead
to a certain pattern in model parameters far below the
fundamental scale that depends very little on boundary
conditions. Indeed, there have been many attempts to
understand values of some gauge couplings [1–6] or
Yukawa couplings [7–14] from the IR fixed point structure
of RG equations. This is quite an intriguing possibility
that allows for predictions of SM parameters even if the
fundamental symmetries or model parameters at the fun-
damental scale remain obscure.
We show that all the couplings of the SM except those

related to first two generations can be understood from the
IR fixed point structure of RG equations in the minimal
supersymmetric model extended by one complete vector-
like family (MSSMþ 1VF) with the scale of new physics
in a multi-TeV range. The pattern of seven largest couplings
can be predicted in terms of three parameters:

MG; M; tan β; ð1Þ

representing the GUT scale (or the fundamental scale of
the model, since we do not necessarily assume grand
unification), the scale of new physics (vectorlike matter
and superpartners, M ≡MV ¼ MSUSY), and the ratio of
vacuum expectation values of the two Higgs doublets,
tan β ¼ vu=vd. Random large values of couplings at MG
inevitably lead to electroweak (EW) scale values very close
to the observed ones.
The main results are summarized in Fig. 1 where we plot

the predicted EW scale values of the gauge couplings, the
third generation fermion masses and the Higgs boson mass
for randomly generated and uncorrelated boundary con-
ditions of gauge and Yukawa couplings in large intervals at
the GUT scale (we plot the masses instead of couplings
because these are more recognizable). We see that the
predictions from random boundary conditions closely
cluster around the measured central values (solid lines).
Almost identical results are obtained assuming universal
gauge and Yukawa couplings at MG in the same intervals
(indicated by dashed lines at the right edges). This clearly
points to the IR fixed point nature of predictions at the
EW scale.
Furthermore, if the scale of new physics is optimized to

fit the measured central value of α3 and if universal Yukawa
couplings are optimized to fit the central measured value of
the top quark mass, then the span of predictions for other
gauge couplings, Yukawa couplings, and the Higgs quartic
coupling significantly shrinks (thin solid lines and shaded
regions at the right edges).
More importantly, the IR fixed point predictions for

couplings in the MSSMþ 1VF should be compared with
the SM values at the scale of new physics. We plot the
corresponding information in Fig. 2. We see that the
relative ranges for α3, λh, and yb at M are significantly
smaller and the predictions are sharper. This is due to the
fact that these couplings change the most in the RG
evolution below the scale of new physics.
The RG evolution for one set of boundary conditions is

given in Fig. 3. In this example (for simplicity chosen with
universal boundary conditions at MG), all the couplings in
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the MSSMþ 1VF meet the corresponding parameters in
the SM within a very narrow range of M, approximately
6–8 TeV. Assuming comparable boundary conditions, the
RG evolution of individual vectorlike Yukawa couplings
closely follows the evolution of yt or yb (for quark Yukawa
couplings) and yτ (for lepton Yukawa couplings) reaching
almost identical values at low energies, and thus we do not
show it.
The example from Fig. 3 is shown as a highlighted point

in Figs. 1 and 2. We also show the span of predictions when
all couplings are independently varied in �20% ranges
around the values corresponding to the highlighted point
(dashed lines on the left) and in Fig. 1 we also indicate the
impact of varying M by �20% (small solid lines near the
point). Varying MG in �20% range has a much smaller
impact and varying tan β only affects the overall scale of
bottom and τ masses (in the large tan β region even
significant variations have a negligible impact on the top
quark mass). Before we discuss the behavior and predic-
tions for individual couplings further, we summarize the
model and details of the analysis.
Model and details of the analysis.—The MSSMþ 1VF

is the minimal supersymmetric model extended by a

complete vectorlike family (an exact copy of a SM family:
q, ū, d̄, l, ē, and corresponding fields with conjugate
quantum numbers). The three parameters in Eq. (1), related
to scales of the model, are the most important parameters

FIG. 2. Points, lines, and the highlighted point represent the
same as in Fig. 1 but with couplings evaluated at M ¼ 7 TeV.

FIG. 1. Predicted values of α1, α2, α3 atMZ,mt,mb,mτ, andmh
for randomly generated α1ðMGÞ, α2ðMGÞ, α3ðMGÞ ∈ ½0.1; 0.3�
and ytðMGÞ, ybðMGÞ, yτðMGÞ, YV ∈ ½1; 3� with fixed MG ¼
3.5 × 1016 GeV,M ¼ 7 TeV and tan β ¼ 40. Solid lines indicate
the measured central values. Dashed lines at the right edges
indicate the span of predictions assuming universal GUT scale
boundary conditions for gauge and Yukawa couplings in the same
ranges. The thin solid lines at the right edges further assume that
M is optimized to fit the central measured value of α3 and the
shaded regions further assume that YV is optimized to fit the
central measured value of mt. The highlighted point corresponds
to the scenario in Fig. 3, the small solid lines near the point
correspond to varying M by �20% and the dashed lines at the
left edges indicate the span of predictions when all couplings
are varied in �20% ranges around the values corresponding to
the highlighted point. Selected couplings and masses are also
zoomed in.

FIG. 3. RG evolution of α1, α2, α3, yt, yb, yτ, and λh [right-hand
side of Eq. (5)] in the MSSMþ 1VF starting from αG ¼ 0.15 and
Y0 ¼ 2 at MG ¼ 3.5 × 1016 GeV, assuming YV ¼ 1.6. At low
energies, the evolution of α1;2;3 and λh in the SM starts from the
measured central values. The plotted yt;b;τ at low energies are
obtained from Eqs. (2)–(4) and the measured central values of
fermion masses, assuming tan β ¼ 40 and that all superpartners
and Higgs bosons except the SM-like one are at the correspond-
ing RG scale, M ¼ E. The vertical highlight shows the range
of M, approximately 6–8 TeV, within which all the couplings
evolved using SM RG equations meet the corresponding cou-
plings in the MSSMþ 1VF.

PHYSICAL REVIEW LETTERS 122, 181803 (2019)

181803-2



determining the values of dimensionless couplings in the
SM. The results do not differ much if the common mass of
superpartners, MSUSY, is not identified with the common
mass of vectorlike fermions, MV , as long as these two
scales are comparable. Similarly, assuming a split spectrum
of vectorlike matter or superpartners, for example the
spectrum obtained from the RG evolution starting with
common mass terms at the GUT scale, would only result
in logarithmic threshold corrections to the gauge and
third generation Yukawa couplings. Unless the splitting
is huge, these effects are negligible compared to the span
of outcomes from the ranges of boundary conditions we
consider. Thus, for simplicity, we assume only one scale
of new physics, M, at which the SM is matched to the
MSSMþ 1VF.
The RG evolution of dimensionless parameters starts at

MG. At this scale, we consider unrelated boundary con-
ditions for gauge couplings, α1;2;3ðMGÞ ∈ ½0.1; 0.3�, and
unrelated boundary conditions for the third generation
Yukawa couplings, yt;b;τðMGÞ ∈ ½1; 3�. In a subset of
results, we also consider universal boundary conditions,
αGðMGÞ and Y0ðMGÞ, in the same intervals. For simplicity
and also not to favor contributions to the top, bottom, or
τ Yukawa couplings in the RG evolution, we assume a
common Yukawa coupling for all vectorlike fields,
YVðMGÞ (assuming unrelated boundary conditions for
individual Yukawa couplings of vectorlike fields in the
same interval does not lead to a visible difference in the
plotted distributions). We also neglect Yukawa couplings of
the first two SM generations and possible mixing between
the third generation and vectorlike matter.
Below the GUT scale, we use three-loop RG equations

for gauge couplings and two-loop RG equations for the
third generation Yukawa couplings and Yukawa couplings
of vectorlike fields based on Refs. [15–21]. The RG
equations for gauge and Yukawa couplings in this model
and related discussion can be found in Refs. [6,14], where
predictions for the scale of new physics from gauge
coupling unification and the possibility of Yukawa cou-
pling unification in this model were studied.
All the particles above the EW scale are integrated out

at their corresponding mass scales. The complete set of
SUSY threshold corrections to the third generation Yukawa
couplings is included at theMSUSY scale, identified withM,
where the Yukawa couplings in the SM are generated:

yt;SMðMÞ ¼ ytðMÞ sin βð1þ ϵtÞ; ð2Þ

yb;SMðMÞ ¼ ybðMÞ cos βð1þ ϵbÞ; ð3Þ

yτ;SMðMÞ ¼ yτðMÞ cos βð1þ ϵτÞ; ð4Þ

with ϵt;b;τ representing SUSY threshold corrections [22–24].
The corrections assume zero soft trilinear couplings (A terms)
and the supersymmetric Higgs mass μ ¼ −

ffiffiffi

2
p

MSUSY

(the absolute value is motivated by radiative EW symmetry
breaking and the sign is favored by themeasured bottomquark
mass). The approximate formulas for the corrections with
these assumptions can be found in Ref. [14].
Similarly, the Higgs quartic coupling is generated at the

scale of new physics:

λhðMÞ≡ g22ðMÞ þ ð3=5Þg21ðMÞ
4

cos22β: ð5Þ

We assume no finite threshold corrections at the M scale
(consistent with zero A terms that we assumed for threshold
corrections of Yukawa couplings). Below this scale, λh is
evolved using the SM two-loop RG equation.
For the measured central values of gauge couplings,

fermion masses, and the Higgs boson mass we use the
following: α−1EMðMZÞ ¼ 127.955, sin2 θW ¼ 0.2312,
α3ðMZÞ ¼ 0.1181, mt¼173.1GeV, mbðmbÞ ¼ 4.18 GeV,
mτ ¼ 1.777 GeV, where mt and mτ are pole masses, and
mh ¼ 125.2 GeV [25]. From these we obtain the corre-
sponding running couplings [26].
Discussion of results.—The behavior of gauge couplings

in the MSSMþ 1VF can be qualitatively understood from
the solution of the one-loop RG equations,

α−1i ðMÞ ¼ bi
2π

ln
MG

M
þ α−1i ðMGÞ; ð6Þ

where bi ¼ ð53=5; 5; 1Þ. Note that adding one complete
vectorlike family makes all three couplings asymptotically
divergent. Thus, starting with large (but still perturbative)
boundary conditions at MG, in the RG evolution to low
energies, the gauge couplings run to the (trivial) IR fixed
point. Far below the GUT scale, the log term dominates and
the couplings approach zero at fixed ratios given by the
ratios of beta function coefficients (that the ratios of gauge
couplings are approximately constant far away from the
GUT scale is visible in Fig. 3). The boundary conditions
(and thus whether gauge couplings unify or not) are less
and less important further away from the GUT scale we
evolve.
From Figs. 1 and 2 we see that the IR fixed point

behavior is very effective for α1 and α2 with all the points
within about �5% and �10% from the central values. As a
result of the small beta function coefficient, α3 approaches
the trivial fixed point at much slower pace and thus depends
on the boundary condition the most. The span of α3ðMÞ is
about �15% around the central value. Because α3 runs the
fastest in the SM, it is the most determining factor for the
scale of new physics. We can fix M to fit the measured
central value of α3. For the range of the scan, α3ðMGÞ ∈
½0.1; 0.3�, we find M ∈ [1 TeV, 45 TeV] with the lower
bound motivating the upper bound of α3ðMGÞ in the scans.
Fixing M to fit α3 inevitably leads to α1 and α2 being very
close to measured values since predictions for these depend
very little onM and even less on the boundary conditions at
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MG. (The agreement is especially striking assuming ran-
dom universal boundary conditions at MG, shown by
shaded ranges in Fig. 1. Predictions from gauge coupling
unification agree with measured values even better than in
the MSSM as a result of two-loop effects from large
Yukawa couplings.)
The quark Yukawa couplings (top, bottom, and those of

vectorlike fields) approach the IR fixed point determined
mostly by α3 very fast. The IR fixed point behavior is
extremely effective. All large quark Yukawa couplings
share the IR fixed point value and thus the number of large
quark Yukawa couplings is more important than their
boundary conditions. The IR fixed point values depending
on the number of vectorlike quark Yukawa couplings can
be calculated assuming common boundary conditions [14]
and these results remain a good approximation as long as
the boundary conditions are comparable. Lepton Yukawa
couplings (τ and those of vectorlike fields) are driven to the
trivial fixed point by large quark Yukawa couplings (and
thus indirectly by α3). From Figs. 1 and 2, we see that
predictions from large range of uncorrelated boundary
conditions cluster around the measured central values.
Although the predictions span larger ranges than those
of gauge couplings, we should keep in mind that we are
scanning a huge range of possible, independent boundary
conditions that span almost an order of magnitude (1

3
− 3)

of their ratios (this affects especially mτ). As the shaded
ranges in Fig. 1 show, assuming random universal boun-
dary conditions and optimizing YV to fit the measured
central value of mt (that requires comparable YV and Y0)
leads to much smaller ranges of predicted values of mb and
mτ that closely cluster around the measured values.
Finally, since λhðMÞ is given in terms of α1 and α2 and

these are sharply focused far below the GUT scale, the
predicted range of λhðMÞ is also very narrow. The much
larger spread of predictions at the MZ scale is due to very
fast running in the SM betweenM andMZ. However, at the
M scale the IR fixed point prediction in the MSSMþ 1VF
is very sharp, see Fig. 2. The agreement with the measured
value follows from the fact that mh ≃ 125 GeV, in the
absence of mixing in the stop sector, requires Oð10 TeVÞ
stop masses [27,28].
Conclusions.—We have shown that the seven largest

couplings of the SM can be predicted in terms of three
parameters related to mass scales from a huge range of
random order one or larger couplings at the GUT scale
(note that the lower limit for gauge couplings we consider,
αi ¼ 0.1, implies Lagrangian parameters gi ≃ 1 since
αi ¼ g2i =4π) as long as the masses of vectorlike family
and superpartners are in a multi-TeV range. Precise
predictions of course require precise input values of all
the couplings. Nevertheless, due to the IR fixed point
structure of RG equations, rough predictions can be made
without detailed knowledge of boundary conditions.
For the ranges of unrelated (or unified) boundary

conditions that we considered, spanning a factor of

3 between the largest and smallest, we find that the
parameters in Eq. (1) can be optimized so that none of
the seven observables is more than 25% (or 15%) from the
measured values. Further optimizing YV to obtain the
required overall scale of Yukawa couplings we find all
seven observables within 11% (or 7.5%) from their
measured values. Predictions are even sharper at the scale
of new physics.
This scenario takes advantage of the success of gauge

coupling unification in the MSSM and the prediction for
the Higgs boson mass (or λh) in supersymmetric theories.
However, that all seven couplings can be understood
simultaneously from random large boundary conditions
at the GUT scale assuming only one (and common) scale
of new physics is highly nontrivial. Repeating a similar
exercise in the MSSM, randomly selecting gauge and
Yukawa couplings in ranges �50% around the best fit
values (which corresponds to the factor of 3 between the
largest and the smallest as in our scans), no familiar pattern
would emerge. Predicted α3ðMZÞ would span an order of
magnitude with no gaps between three gauge couplings.
Predictions would include α3 comparable to α1 with a much
larger α2, mt below MZ and above 400 GeV, over an order
of magnitude range for mb and the τ often much heavier
than the bottom quark.
Our findings motivate new fermions and superpartners

with masses in a multi-TeV range. Although the typical
scale is beyond the reach of the LHC, a part of the spectrum
could be within the reach if MV is split from MSUSY or
when nonuniversal vectorlike masses or superpartner
masses are assumed. In addition, assuming nonzero A
terms lowers the scale of new physics required by the Higgs
boson mass. Even a significant splitting of masses or
introduction of moderate A terms does not affect the
presented results significantly, it only moves the preferred
range of couplings (smaller scales of new physics prefer
larger gauge and Yukawa couplings at MG).
Furthermore, since in this model the fundamental

symmetries or relations between couplings at the funda-
mental scale are not crucial for predictions that would
agree with observations, this may open a new direction for
exploring other UVembeddings of the SM that might shed
light on different features of the SM or remove problem-
atic aspects of conventional GUT models (origin of three
families, hierarchies in fermion masses, doublet-triplet
splitting, and proton decay among others). For example,
product group embeddings of the SM, like Pati-Salam
or flipped SU(5) among many others, that do not feature
gauge or Yukawa coupling unification, would have
essentially the same predictions at low energies as models
with unification, if extended by a complete vectorlike
family.
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