
 

Foreground-Immune Cosmic Microwave Background Lensing with Shear-Only
Reconstruction

Emmanuel Schaan* and Simone Ferraro†

Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA
and Berkeley Center for Cosmological Physics, University of California, Berkeley, California 94720, USA

(Received 23 April 2018; revised manuscript received 6 August 2018; published 8 May 2019)

Cosmic microwave background (CMB) lensing from current and upcoming wide-field CMB experiments
such as AdvACT, SPT-3G and Simons Observatory relies heavily on temperature (versus polarization). In
this regime, foreground contamination to the temperature map produces significant lensing biases, which
cannot be fully controlled by multifrequency component separation, masking, or bias hardening. In this
Letter, we split the standard CMB lensing quadratic estimator into a new set of optimal “multipole”
estimators. On large scales, these multipole estimators reduce to the known magnification and shear
estimators, and a new shearB-mode estimator. We leverage the different symmetries of the lensed CMB and
extragalactic foregrounds to argue that the shear-only estimator should be approximately immune to
extragalactic foregrounds. We build a new method to compute, separately and without noise, the primary,
secondary, and trispectrum biases to CMB lensing from foreground simulations. Using this method, we
demonstrate that the shear estimator is, indeed, insensitive to extragalactic foregrounds, even when applied
to a single-frequency temperature map contaminated with cosmic infrared background, thermal Sunyaev-
Zel’dovich, kinematic Sunyaev-Zel’dovich, and radio point sources. This dramatic reduction in foreground
biases allows us to include higher temperature multipoles than with the standard quadratic estimator, thus,
increasing the total lensing signal-to-noise ratio beyond the quadratic estimator. In addition, magnification-
only and shear B-mode estimators provide useful diagnostics for potential residuals.
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Introduction.—Weak lensing of the cosmic microwave
background (CMB) measures the projected matter distribu-
tion throughout the observable Universe and is one of
the most promising probes of dark energy, modified gravity,
and neutrino masses [1,2]. As the measurement precision
increases, systematic biases become more important. While
CMB-S4 [3] lensing data should be polarization dominated
in the future, in the coming decade, CMB lensing measure-
ments from AdvACT [4], SPT-3G [5], and Simons
Observatory [6] will rely heavily on temperature. In this
regime, extragalactic foregrounds such as the cosmic infrared
background (CIB), the thermal Sunyaev-Zel’dovich effect
(TSZ), the kinematic Sunyaev-Zel’dovich effect (KSZ), and
radio point sources (PS) can produce biases much larger than
the statistical errors, if unaccounted for [7–10]. Mitigation
methods have been proposed. For example, masking indi-
vidually detected or known sources can decrease the bias,
and techniques such as bias hardening [8,11,12] are effective
when the foreground trispectrum is known. Multifrequency
component separation [10] can reduce or null specific
foreground components. However, a minimum-variance
multifrequency analysis only leads to a modest reduction
in foregrounds, and simultaneously nulling TSZ and CIB
comes at a large cost, increasing the noise power spectrumby
a factor as large as 50 [6]. Furthermore, multifrequency
component separation has no effect on the KSZ, which alone
causes a significant lensing bias [9]. Therefore, newmethods

are needed in order to produce unbiased lensing measure-
ments from CMB temperature maps.
In this Letter, we explore a new approach, leveraging the

differing symmetries of the lensing deflections and extra-
galactic foregrounds in order to separate them. Indeed, as
we argue below, extragalactic foregrounds are degenerate
with lensing magnification (local monopole distortion of the
power spectrum) but not with lensing shear (local quad-
rupolar distortion) or higher order multipoles. Throughout
this Letter, we consider lensing measurements from CMB
temperature only, rather than polarization, although we
expect a similar approach to work in polarization too.
Lensing multipole estimators.—Estimators:Weak lensing

modulates the 2D CMB power spectrum, creating local
distortions. These distortions to the power spectrum can be
decomposed into a monopole (m ¼ 0) corresponding to an
isotropic magnification or demagnification, a quadrupole
(m ¼ 2) corresponding to shearing, as well as higher order
even multipoles. Mathematically, the presence of a fixed
lensing convergence κL, creates off-diagonal correlations in
the observed CMB temperature T

hTlþL
2
TL

2
−li ¼ fκ

lþL
2
;L
2
−lκL þOðκ2Þ: ð1Þ
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which defines the mth multipole response function fmL;l.
These can be used in Eq. (1) to obtain an estimator of κL,
from multipole m only. Explicit minimum variance expres-
sions are given in the Supplemental Material [13], and
Fig. 1 shows that the monopole and quadrupole estimators
contain most of the lensing signal-to-noise ratio, allowing
us to neglect estimators with m > 2 in practice. To allow a
fast evaluation with FFT, we can replace these non-
separable optimal multipole estimators by their limits in
the “large-scale lens regime”, where large-scale (L≲ 300)
lensing modes are reconstructed from small-scale
(l ≳ 300) temperature modes. In this regime, our optimal
monopole and quadrupole estimators reduce to the mag-
nification (To be consistent with the optical lensing
literature, this estimator should be called “convergence”
instead of “magnification”. Since we already use the name
convergence to designate the lensing field κ that is being
reconstructed, we decided to call shear and magnification
the two distinct effects, to avoid confusion.) and shear E-
mode estimators of [14–16] (see, also, [14,17–19]), as well
as a new shear B-mode estimator

κL ¼
R

d2l
ð2πÞ2 TlTL−lgL;l

2L
L2 ·

R
d2l
ð2πÞ2 gL;l½lC0

l þ ðL − lÞC0
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These estimators should only be interpreted as measuring
magnification and shear in the large-scale lens regime
(L ≪ l). However, they remain unbiased lensing estima-
tors on all scales. They match the harmonic-space version
of [15,16], after normalizing them to be unbiased and with
the substitution TlþL=2TL=2−l → TlTL−l to allow fast
evaluation with FFT. Further, we substitute the lensed
CMB power spectrum to C0, as is customary for the
quadratic estimator (QE) [20–22]. As shown in the
Supplemental Material [13] Fig. 1, the magnification and
shear estimators are optimal on large scales (L≲ 300)
where they have the same noise as the optimal m ¼ 0 and
m ¼ 2 estimators, are roughly uncorrelated, and recover the
signal-to-noise ratio of the standard QE. In the Born
approximation, the shear B-mode estimator has zero
response to lensing and provides a useful null test. As
we show below, it also allows us to detect and subtract any
potential “secondary foreground bias” (defined below).
Statistical signal-to-noise ratio: Throughout this Letter,

we consider an upcoming stage 3 (“CMB S3”) experiment,
with 1.40 beam FWHM and 7 μK0 sensitivity at 148 GHz.
We apply the lensing estimators to the single-frequency
map at 148 GHz, without any multifrequency component
separation. For the lensing weights, we include the lensed
CMB, all the foregrounds of the section below titled
Sensitivity to foregrounds: simulations, and the detector
white noise in the total power spectrum.
Intuitively, Eq. (4) means that magnification can only be

measured from a non-scale-invariant power spectrum
(d lnl2C0

l=d lnl ≠ 0), and shear only from a nonwhite
power spectrum (d lnC0

l=d lnl ≠ 0). The unlensed CMB
power spectrum is neither scale invariant nor white, so a
similar signal-to-noise ratio is expected for the shear and
magnification estimators. Indeed, as shown in Fig. 2, the

FIG. 1. Noise power spectrum of the lensing convergence κ,
reconstructed with the optimal quadratic multipole estimators.
Monopole (m ¼ 0) and quadrupole (m ¼ 2) estimators contain
most of the lensing signal-to-noise ratio. The multipole estimators
are uncorrelated for L≲ 300.

FIG. 2. Lensing reconstruction noise per lensing multipole for
the standard quadratic estimator (QE, red), the magnification
(green), shear E-mode (blue) and B-mode (cyan) estimators,
when using temperature modes l ¼ 30–3500. Below multipoles
of a few hundred, the shear E and magnification estimators are
roughly uncorrelated, and recover the QE when combined, taking
into account their noise covariance. Shear E and shear B have
similar noise for low multipoles, which makes the shear B a
useful null test to compare to shear E.
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lensing noise in shear and magnification is comparable.
This is convenient: shear and magnification estimators can
be compared as a consistency check for residual fore-
grounds. At fixed lmax;T , the total signal-to-noise ratio in
either shear or magnification is about 60% of that in the QE
including the cosmic variance. However, as we show
below, the shear estimator is less affected by foregrounds,
allowing us to use lmax;T ¼ 3500 instead of lmax;T ¼ 2500
for the QE. This allows us to recover all of the signal-to-
noise ratio lost by discarding the magnification part. To
optimize further, we build a “hybrid estimator” by forming
the minimum-variance linear combination of the magnifi-
cation measured from lmax;T ¼ 2000 (where foreground
contamination is small) and the shear measured from
lT ¼ 30–3500. This minimum-variance linear combina-
tion takes into account the correlation between the estima-
tors. This “hybrid” estimator, shown in Fig. 3, increases the
SNR on the amplitude of lensing by 14% compared to the
QE with lmax;T ¼ 2500, from 93 to 106. A similar hybrid
estimator, constructed from the multipole estimators rather
than from the magnification and shear will increase the
SNR even further.
A spike in the noise power spectrum can be seen for the

magnification and shear estimators in Fig. 2, but not for
the multipole estimators in Fig. 1. This is a result of the
approximate lensing weights in Eq. (4), only valid in the

large-scale lens regime, which cause these estimators to
have zero response to lensing (and, thus, infinite noise) at
the location of the spike.
Expected sensitivity to foregrounds:Extragalactic fore-

grounds dominate the lensed CMB on small scales
(l≳ 3000), where they are well described by a one-halo
or shot noise term, i.e., by a set of unclustered emission
profiles (e.g., halos) or point sources (e.g., galaxies inside
azimuthally symmetric halos). If the emission profiles are
azimuthally symmetric, the local foreground power spec-
trum on a small patch of the sky is isotropic, i.e., a function
of l ¼ jlj instead of l. As a result, the corresponding
foreground component modifies the observed power spec-
trum monopole (m ¼ 0), but not its higher multipoles. This
should bias the magnification estimator and, therefore, the
QE, but not the shear estimator.
If the foreground sources are halos with random inde-

pendent ellipticities, or are pointlike but clustered in
elliptical filaments with random orientations, they produce
extra noise in the shear estimator, analogous to the shape
noise in galaxy lensing. On the other hand, if the elliptic-
ities of foreground halos or of their clustering (filaments)
are aligned with the local tidal field, they will produce a
bias to the shear estimator, analogously to intrinsic align-
ments in galaxy lensing (see App. D in [23]).
In summary, any extragalactic foreground biases the

magnification estimator and the QE, whereas only fore-
grounds with specific anisotropies (intrinsic alignments)
affect the shear estimators. In the next section, we test this
intuition with realistic foreground simulations.
Sensitivity to foregrounds: simulations.—Method: We

use simulated maps of lensing convergence, CIB, TSZ,
KSZ, and radio PS at 148 GHz from [24], obtained by
painting polytropic baryonic profiles on a large-box
(L ¼ 1 Gpc=h) N-body simulation. Crucially, the gas
density and temperature profiles given to a halo are not
spherical but, instead, follow the triaxiality of the local
matter tidal tensor at the position of the halo. As a result,
these simulations include a reasonable level of shape noise
and “intrinsic alignment”. A halo catalog from this N-body
simulation is also available. We reweight these halos
to match the redshift distribution of the LSST gold
sample, with i-band magnitude i < 25.3 [25] [dn=dz ∝
ðz=z0Þ2e−z=z0=ð2z0Þwith z0 ¼ 0.24], and obtain a projected
“galaxy” number density map δg. The “galaxy bias”
measured from this map roughly matches the expected
value bðzÞ ¼ 1þ 0.84z [25]. These maps have two crucial
features: they are realistically correlated with each other,
and have a reasonable level of non-Gaussianity. The
simulations also include the effect of anisotropic clustering
of halos inside filaments, of anisotropic halo profiles,
including possible intrinsic alignments. Our goal is to
compute the foreground biases to the cross-correlation of
CMB lensing with galaxies C

κδg
L and to the CMB lensing

autospectrum Cκκ
L .

FIG. 3. Total signal-to-noise ratio on the amplitude of the
lensing power spectrum, including cosmic variance, as a function
of the maximum temperature multipole lmax;T , for fsky ¼ 1.
Different colors correspond to the different estimators. Dashed
lines indicate when foreground biases are larger than the
statistical uncertainty, even after masking point sources detected
at 5σ. At fixed lmax;T , the signal-to-noise ratio in either shear or
magnification is about 60% of the signal-to-noise ratio of the QE.
However, as we show below, keeping the foreground bias below
the statistical error requires lmax;T ¼ 2500 for the QE (red dot,
S=N ¼ 70), compared to lmax;T ¼ 3500 for the shear estimator
(blue dot, S=N ¼ 77): hence, the final shear signal-to-noise ratio
exceeds that of the QE by 10%. A hybrid estimator QEðl ≤
2000Þ and shear(l ¼ 2000–3500) is shown in purple, and
increases the signal-to-noise ratio by 37% compared to the
standard QEðl ≤ 2500Þ.
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We subtract the mean emission in each foreground map,
then rescale the maps by factors of order 1 to match the
power spectrum model of [26] (0.38 for CIB, 0.7 for TSZ,
0.82 for KSZ, 1.1 for radio PS). Following [7], we then
mask the point sources with flux ≳5 mJy in each fore-
ground map. To do so, we match-filtered the foreground
maps with a profile corresponding to the beam and a noise
determined by the total power spectrum (lensed CMB plus
all foregrounds). The resulting foreground power spectra
are shown in the Supplemental Material [13], Fig 3.
In principle, one should add all the foreground maps

together to get the total bias, including their correct cross-
correlations. However, component separation will reduce
each foreground differently. For this reason, we analyze
each foreground map separately. This should allow the
reader to quantify the foreground bias for any component
separation method by rescaling our values appropriately. In
what follows, our lens reconstruction relies on temperature
multipoles l ¼ 30–3500. To measure the lensing bias due
to the foregrounds, we decompose the observed sky
temperature Tobs into the lensed primary CMB TCMB,
the foregrounds Tf, and the detector noise Tnoise:
Tobs ¼ TCMB þ Tf þ Tnoise. We write Q½TA; TB� for any
quadratic estimator (QE, shear, or magnification) applied to
maps TA and TB, symmetrized in A ↔ B.
As shown in [7–9], biases to the CMB lensing auto

power spectrum Cκκ
L arise from the foreground bispectrum

(primary and secondary terms [8]), and from the foreground
trispectrum. We evaluate them as follows: (1) The primary
bispectrum term is computed as 2hQ½Tf; Tf�κCMBi, as in
[7–9]. (2) The secondary bispectrum could, in principle, be
computed as 4hQ½Tf; TCMB�Q½Tf; TCMB�i. However,
this autocorrelation is biased by the large noise of
Q½Tf; TCMB�, which would have to be subtracted accu-
rately. Therefore, we propose and implement a new method
to avoid this issue. We Taylor-expand the lensed CMB
map TCMB ¼ T0 þ T1 þ � � � in powers of κ and compute
the quantity 8hQ½Tf; T0�Q½Tf; T1�i (Another way to
evaluate the secondary bispectrum term would
be hQ½Tf;TCMB�Q½Tf;TCMB�−Q½Tf;T 0

CMB�Q½Tf;T 0
CMB�i

where T 0
CMB is constructed from the same unlensed

CMB realization as TCMB but lensed by an independent
κ realization.). This works because the quadratic estimators
are, by construction, unbiased when applied to the pair
ðT0; T1Þ, to first order in lensing. This greatly reduces the
noise, and this is a cross-correlation so no noise subtraction
is needed (no N0, or higher order bias Ni). (3) For the
trispectrum term, we compute hQ½Tf; Tf�Q½Tf; Tf�i, and
subtract the Gaussian contribution (which is a part of N0)
analytically, as in [7,8].
For the cross-correlation with tracers C

κδg
L , only the

primary bispectrum is present, and without the combina-
torial factor 2: hQ½Tf; Tf�δgi. The secondary bispectrum
and trispectrum terms only act as a source of noise on this
cross-correlation, not bias.

Results: The resulting foreground biases for the cross-
correlation C

κδg
L are shown in Fig. 4. Despite the masking of

point sources, the CIB, TSZ, KSZ, and radio PS lead to
very large and statistically significant biases for the QE and
the magnification estimators. Again, multifrequency com-
ponent separation may be used to null the TSZ bias, or
reduce the CIB or radio PS biases. However, reducing all
these biases simultaneously typically causes a large noise
increase. Furthermore, multifrequency analyses have no
effect on the KSZ bias. Therefore, these foreground biases
are a major concern for the standard QE. On the other hand,
no foreground bias is detected in the shear estimator. This is
the main result of this Letter: even when applied to a single-
frequency temperature map, the shear estimator measures
only the quadrupolar distortions from lensing and,
therefore, is immune to foregrounds. It is remarkable that
this holds even for a single frequency map out to
lmax;T ¼ 3500, where the temperature modes are fore-
ground dominated. Our QE TSZ bias in Fig. 4 is smaller
than in [10,27], which can be explained by our scaling
down of the TSZ map to match the power spectrum model
of [26], our masking, and the different redshift of our
galaxy catalog. Our CIB bias is slightly larger than found
in [27].
For the lensing autospectrum Cκκ

L , the primary, secon-
dary, and trispectrum biases discussed in the previous
section are shown in Fig. 5. At low (respectively. high)

FIG. 4. Relative bias to the cross-correlation between CMB
lensing and the LSST gold galaxy sample, as a function of lensing
multipole L, when including temperature multipoles l ¼
30–3500 at 148 GHz. This foreground bias corresponds to the
primary bispectrum term. The grey boxes indicate bins of lensing
multipoles with the corresponding statistical error bars for the
standard quadratic estimator (lensing noise plus cosmic variance,
identical in each panel). The foreground biases are much larger
than the statistical error bars for both the standard quadratic
estimator and the magnification estimator, whereas they are
barely measurable for the shear estimator.
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lensing multipoles, the primary (respectively. trispectrum)
bias dominates. In both cases, a large bias is seen in the QE
and magnification estimator, while the shear estimator is
unbiased. Our primary and trispectrum foreground biases
are consistent with the results of [7] for the CIB and TSZ,
and slightly smaller than what is found in [9] for the KSZ,
due to our rescaling of the KSZ map and the slightly
different lensing weights. We compute the secondary
foreground bias separately. This term is smaller than the
primary and trispectrum term, but non-negligible for L of a
few hundred. Here, the shear estimator alone does not
improve over the QE and magnification estimators. This
occurs because the shear secondary bias introduces a
cos2ð2θÞ, which makes it sensitive to the foreground
monopole power. However, the shear B-mode estimator
has the same secondary bias and no response to lensing:
therefore, subtracting it from the shear E mode cancels the
secondary bias at the cost of an increased noise. Overall, the
shear estimator dramatically reduces the foreground biases.
In the absence of any foreground cleaning, the shear
estimator allows us to increase the range of multipoles
used in the lens reconstruction from lmax;T ≈ 2500 for the
QE, to lmax;T ≈ 3500 for shear only. Multifrequency fore-
ground cleaning may help increase the range of usable
multipoles—and, thus, the statistical power—for all estima-
tors. The proposed shear B-mode subtraction may further
improve the range for the shear E-mode estimator. We leave
a detailed optimization study to future work.
Conclusion.—For current and upcoming CMB experi-

ments such as AdvACT, SPT-3G, and Simons Observatory,
CMB lensing reconstruction will rely heavily on temper-
ature. Foreground emission is known to contaminate
temperature maps from which lensing is reconstructed
and, therefore, produce very significant biases, leading to
wrong conclusions about cosmology if unaccounted for.
Modeling and subtracting these bias terms is likely to be
very challenging, due to the complex baryon physics
involved in producing them. While some foregrounds
can be nulled (TSZ) or reduced (CIB, radio PS) by a
multifrequency analysis at the cost of a degradation in map
noise, other foregrounds cannot (KSZ).
Therefore, in this Letter, we explored a different

approach, by using the approximate isotropy of the extra-
galactic foreground 2D power spectra, and splitting the QE
into optimal quadratic multipole estimators.
In the large-scale lens regime, they reduce to the

isotropic magnification and anisotropic shear E-mode
estimators of [14–16], and a new shear B-mode estimator.
The shear estimator enables a remarkable reduction of
foreground biases, compared to the QE, even when applied
to a single-frequency temperature map. As a result, the
shear estimator allows us to increase the range of multi-
poles used in the lens reconstruction to lmax;T ≈ 3500
instead of lmax;T ≈ 2500 for the QE, while keeping fore-
ground biases within the statistical uncertainty. Overall, the

FIG. 5. Relative foreground bias on the CMB lensing power
spectrum, as a function of lensing multipole L, when including
temperature multipoles l ¼ 30–3500 at 148 GHz. The grey
boxes indicate bins of lensing multipoles with the corresponding
statistical error bars for the standard quadratic estimator (lensing
noise plus cosmic variance). Top: primary bispectrum bias,
dominant at low L. Middle: trispectrum bias, dominant at high
L. Bottom: secondary bispectrum bias. The dominant biases
(primary and trispectrum) are much larger than the statistical error
bars for the QE and magnification estimator and are barely
measurable for the shear estimator. The secondary bispectrum
bias is smaller and similar in size for all estimators. The
secondary bispectrum bias is identical for the shear E and B
estimators, making the difference of the two an unbiased lensing
estimator.
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signal-to-noise ratio in shear with lmax;T ¼ 3500 is very
similar to that in QE with lmax;T ¼ 2500. Thus, the shear
estimator provides a robust way of measuring lensing.
Component separation may allow the use of higher
multipoles for all estimators. On the other hand, the
magnification estimator is highly sensitive to foregrounds,
so comparing magnification and shear provides an excel-
lent diagnostic for foreground contamination. The shear
B-mode estimator constitutes an additional null test, and
allow us to further reduce foreground biases. Quantifying
the size of the higher order biases such as Nð1Þ and Nð2Þ
for the shear and magnification estimators will be
important.
Further optimization is possible, by combining different

estimators with different lmax;T . For instance, a hybrid
estimator magnification(l ≤ 2000) and shear(l ≤ 3500)
improves the lensing signal-to-noise ratio by 14% com-
pared to the standard QE(l ≤ 2500).
Better approximations to the optimal multipole estima-

tors than the shear and magnification estimators may yield
further improvements in signal-to-noise ratio. A promising
approach would be to replace the derivatives in Eq. (4) by
free functions of l to be optimized. Future CMB lensing
data from CMB S4 should be polarization dominated. The
shear and magnification estimators can be generalized to
polarization [16], and may bring improvements there too.
This would have implications for precision delensing, in
order to isolate primordial tensor modes. Similar fore-
ground biases occur in lens reconstruction from intensity
mapping [23,28] (e.g., the “self-lensing bias” for CIB), and
the shear estimator may allow us to reduce them [23,28].
Finally, the split into magnification and shear E and B
modes may also help detect residual Galactic foregrounds
or beam ellipticity. We leave the exploration of these
promising avenues to future work.
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