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We study equilibration of an isolated quantum system by mapping it onto a network of classical
oscillators in Hilbert space. By choosing a suitable basis for this mapping, the degree of locality of the
quantum system reflects in the sparseness of the network. We derive a Lieb-Robinson bound on the speed
of propagation across the classical network, which allows us to estimate the timescale at which the
quantum system equilibrates. The bound contains a parameter that quantifies the degree of locality of
the Hamiltonian and the observable. Locality was disregarded in earlier studies of equilibration times,
and it is believed to be a key ingredient for making contact with the majority of physically realistic
models. The more local the Hamiltonian and observables, the longer the equilibration timescale predicted
by the bound.
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Equilibration is one of the key concepts in thermody-
namics. In the quest to derive, or at least justify, the
macroscopic laws of thermodynamics from microscopic
theories, much progress has been made on the quantum
mechanical side over the last decade or two. For a variety of
settings, rigorous proofs have been given, establishing
conditions under which an isolated quantum mechanical
system on a sufficiently large Hilbert space will approach
equilibrium [1–9]. Key for the progress in the field was to
identify suitable definitions of equilibration in a probabi-
listic sense: it is neither realistic to expect nor required that
the density operator of the system converges to an equi-
librium state; instead, equilibration happens on the level
of observables, in the sense that expectation values of a
suitable class of observables, including the physically
realistic ones, approach their equilibrium values and stay
close to them for most later times.
The aforementioned results are an important step

towards a microscopic justification of thermodynamics.
However, for explaining why equilibration and equilibrium
are so ubiquitously observed in nature, one would need to
show not only that equilibration takes place but also that it
does so on a physically realistic timescale: neither too long
for equilibrium ever to be attained nor too short for the
equilibration process to be observed. The quest to provide a
microscopic justification of physically realistic equilibra-
tion timescales is arguably the most important open
question in the field [10,11]. A key characteristic that
determines whether a timescale can be considered realistic
is its scaling with the Hilbert space dimension because
timescales that grow or decrease with the full dimension of
the Hilbert space will result in either unrealistically long or
short equilibration times [12].

General upper bounds on the equilibration timescale
have been obtained [5], but the predicted timescales are
unrealistically long. In fact, for a given quantum system,
one can construct observables that equilibrate only after
extremely long times [13,14]. Such behavior, however, is
untypical in a well-defined probabilistic sense. On the other
hand, it has also been shown that typical observables and/or
Hamiltonians [13–17], or typical nonequilibrium initial
states [18], equilibrate on unrealistically short timescales. It
was conjectured that physically relevant systems are not
typical in the sense of random matrix theory, and that
locality of the observables and Hamiltonians needs to be
taken into account in order to derive realistic equilibration
timescales [13].
An example of a local Hamiltonian H is a lattice model

with only nearest-neighbor interactions; and an example of
a local observable O is the total magnetization of a spin
lattice model given as the sum (over the entire lattice) of
single-site spin operators. The simultaneous locality of H
and O implies that there is a basis with respect to which the
matrix representations of the two operators are simulta-
neously sparse. Similarly, by a theorem of Arad et al. [19],
H is approximately sparse (up to exponentially small
corrections) in the eigenbasis of the O, and vice versa.
In this Letter, we make use of this sparseness to derive

an estimate of the equilibration times of isolated, local
quantum systems. The key idea is to rewrite the quantum
mechanical time evolution governed by the Schrödinger
equation as a network of coupled classical oscillators in
Hilbert space, in which each node of the oscillator
represents an eigenstate of the observable O, as illustrated
in Fig. 1 (left). Equilibration of the quantum system occurs
when an excitation of an oscillator corresponding to a
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nonequilibrium value of O propagates to an equilibrium
node. We estimate the propagation speed through the
network by means of a classical Lieb-Robinson bound,
which in turn gives access to the equilibration time of the
quantum system. Our main result is a bound on the
equilibration time that, for sufficiently local interactions,
scales logarithmically with the system size, and hence
scales doubly logarithmic with the Hilbert space dimen-
sion, as shown in Fig. 1 (right). Unlike, and complementary
to, previously published upper bounds, our Lieb-Robinson
approach provides a lower bound on the equilibration time.
Moreover, the bound increases with increasing locality of
the Hamiltonian and observable, leading to physically more
realistic estimates.
Setting.—We consider a quantum system on the sites N

of a finite lattice or graph of size L ¼ jN j, with a finite-
dimensional Hilbert space Hi attached to each site i ∈ N .
The total Hilbert space H is the tensor product space of all
the Hi. The dynamics of an isolated quantum system is
generated by a time-independent Hamiltonian H ¼ P

XhX
acting on H, where the summation is over subsets X of N ,
and hX acts nontrivially only on the sites in X. Following
Arad et al. [19], we quantify the locality of H through the
parameter

g ¼ max
i∈N

����
X
X∋i

hX

����: ð1Þ

Note that this rather weak definition of locality does not
restrict interactions to only neighboring sites. We consider a
κ-local observable

O ¼
X
X∈N κ

ωX; ð2Þ

i.e., the summation in Eq. (2) extends only over the subsets
N κ ¼ fX ∈ N ∶jXj ≤ κg containing, at most, κ sites; and
ωX acts nontrivially only on the sites in X. Without loss of
generality, we assume kOk ¼ 1.

According to the Schrödinger equation, the time evolu-
tion of a normalized initial state jψð0Þi ∈ H is given by
jψðtÞi ¼ expð−iHtÞjψð0Þi. The longtime average of an
observable O can be written as

hOieq ≡ lim
t→∞

1

t

Z
t

0

hψðτÞjOjψðτÞidτ ¼
X
k

jckj2hEkjOjEki;

ð3Þ

where ck ¼ hEkjψð0Þi are the overlaps of the initial state
with the energy eigenstates jEki. We define Heq as the
subspace of H spanned by those eigenstates jOki of O for
which the eigenvalues satisfy jOk − hOieqj ≤ ϵ for some
small positive ϵ. Following Goldstein et al. [13], we define
equilibrium with respect to the observable O as all the states
in H that are sufficiently close to Heq. A nonequilibrium
subspaceHneq can be defined in an analogous way and, from
typicality arguments, it follows that dimHeq ≫ dimHneq

[13]. According to these definitions, for a system to be in
equilibrium with respect to the observable O, it is not
sufficient that hOi ≈ hOieq, but it is additionally required
that the variance be small, hðO − hOieqÞ2i ≈ 0.
To analyze the dynamics that drives the system from

nonequilibrium to equilibrium, we choose a representation
in the eigenbasis fjOkig of the observable O. With the
definitions

xjðtÞ ¼ hOjjψðtÞi; Hjk ¼ hOjjHjOki; ð4Þ

we integrate the Schrödinger equation _xjðtÞ ¼
−i
P

kHjkxkðtÞ to obtain

eiHjjtxjðtÞ ¼ xjð0Þ − i
X
k≠j

Hjk

Z
t

0

eiHjjτxkðτÞdτ: ð5Þ

We interpret this equation as a network of oscillators xjðtÞ,
where the diagonal matrix elementsHjj fix the frequencies,
and the off-diagonal elements Hjk determine the couplings
between the oscillators.
The picture of coupled oscillators conveys an intuitive

understanding of equilibration: Preparing the system in an
initial state where oscillators corresponding to equilibrium
observable eigenstates have negligible amplitudes xjðtÞ,
oscillations need to travel through the network in order to
excite equilibrium oscillators. The locality of the quantum
system imposes a locality structure on such a network of
classical oscillators. This is in line with Refs. [10,19],
where it was shown that a local observable is a banded
matrix in the energy eigenbasis of a local Hamiltonian
when the eigenstates are sorted in ascending order. An
analogous result holds for the matrix representation of the
Hamiltonian in the eigenbasis of the observable, which
implies an approximate locality structure of the oscillator
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FIG. 1. Left: Visualization of a typical weighted graphHjk for a
local Hamiltonian. The top nodes (red) correspond to nonequili-
brium states, and the bottom nodes (blue) are equilibrium states.
The thickness of the edges is determined by jHjkj. Right: Scaling
of the equilibration timescale t�jk from Eq. (9) with the system size
L for particularly local and nonlocal choices of the parameters
[g ¼ kHk=L and g ¼ kHkðL − 1Þ=L, respectively].
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network, with coupling strengths Hjk being zero or
exponentially suppressed if jOk −Ojj is large. Figure 1
(left) illustrates that, in order for the nonequilibrium state to
excite the equilibrium states, an excitation first needs to
travel through intermediate states.
Bounds on propagation.—The speed at which oscilla-

tions propagate through the network is therefore crucial for
determining the timescale on which the quantum system
equilibrates. To study the propagation speed, we define

ΛjkðtÞ≡
���� ∂xjðtÞ∂xkð0Þ

����; ð6Þ

which quantifies the effect of a perturbation of the
amplitude xk at time 0 on the amplitude xj at a later
time t. Upper bounds Bjk ≥ Λjk are known for fairly
general Hamiltonian systems as classical analogs of
Lieb-Robinson bounds [20–24]. For network nodes j
and k separated by a large graph distance, Λjk is small
at early times but will usually become non-negligible at
later times. This onset of non-negligible Λjk values gives

rise to a causal structure in the plane of time t and the graph
distance on the network. Whether this causal structure has
the shape of a light cone, or a generalization thereof,
depends on the locality of the couplings [24]. In this way,
the locality of the quantum system enters into our analysis.
Here we derive, by different techniques, a bound on Λjk

not as a function of the graph distance but of the distance
jOj −Okj in observable eigenvalues, which is related to the
distance from equilibrium if jOji is an equilibrium state.
The time evolution equation xjðtÞ ¼

P
kðe−iHtÞjkxkð0Þ

allows us to rewrite and upper bound Eq. (6) as

ΛjkðtÞ ¼ jðe−iHtÞjkj ≤
X∞
n¼0

tn

n!
jðHnÞjkj: ð7Þ

We further bound the right-hand side of Eq. (7) by
combinatorial techniques, which are detailed towards the
end of this Letter and in the Supplemental Material [25], to
obtain our main result,

lnΛjkðtÞ ≤ BjkðtÞ≡
� ðkHk − κgrÞt − 1

2
jOk −Ojj

�
ln jOk−Ojj

2κgrt − 1
�

for t ≤ t⋆jk
0 for t > t⋆jk

ð8Þ

with

t⋆jk ¼
1

2
jOk −Ojj

W½ðkHk − κgrÞ=ðeκgrÞ�
kHk − κgr

: ð9Þ

Here, r≡P
XkωXk is an upper bound on the norm of the

κ-local observable O defined in Eq. (2), and W denotes the
Lambert function defined via WðzezÞ ¼ z [26].
Equation (8) gives an upper bound on how strongly the

population of the observable eigenstate jOki, encoded in
the variable xk, can influence the population of jOji at a
later time t; see Fig. 2 for an illustration. The influence of xk
on xj is small initially, and it grows with increasing t. The

larger the difference jOk −Ojj, the longer it takes for Λjk to
become non-negligible. Thinking ofOk as belonging to the
nonequilibrium subspace Hneq and of Oj as belonging to
Heq, the time t�jk in Eq. (9) gives a lower bound on the
equilibration timescale because it separates the light-cone-
shaped causal region where Bjk ¼ 0 from the region where
Bjk < 0. In the latter region, the influence ofHneq onHeq is
negligible and the system cannot have equilibrated yet. We
therefore take t�jk as a lower estimate of the equilibration
timescale: teq ≥ t�jk. The slope of the light cone can be
read off from Eq. (9) and estimates the speed at which
oscillations propagate through the network.
The bound BjkðtÞ and the timescale t�jk depend on the

product of parameters κgr, where κ and r are affected by
the locality of the observable O, and g is affected by
the locality of H. To illustrate this dependence, we fix
kHk ¼ k ¼ r ¼ 1 and consider the maximum distance
jOk −Ojj ¼ 2 away from equilibrium. For a strongly local
Hamiltonian with only nearest-neighbor pair interactions,
we have g ∼ kHk=L, implying

t�jk ¼
L

L − 1
W

�
L − 1

e

�
∼ lnðLÞ ð10Þ

in the large-system limit. In the absence of any locality, we
can assume g ∼ kHkðL − 1Þ=L, which results in the scaling
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FIG. 2. Contour plots of Lieb-Robinson bound BjkðtÞ in Eq. (8)
for parameter values L ¼ 10 and kHk ¼ kOk ¼ k ¼ r ¼ 1. We
use g ¼ kHk=L (left) for a strongly local system and g ¼
kHkðL − 1Þ=L (right) for a nonlocal system. The time t�jk in
Eq. (9), which defines a light cone, is shown as a solid red line.
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t�jk ¼ W

�
1

e
1

L − 1

�
L ∼

1

e
; ð11Þ

see Fig. 1 for an illustration. This dependence of equili-
bration times on locality is in qualitative agreement with
findings for specific models [27–30]. Unlike other Lieb-
Robinson bounds, the right-hand side of Eq. (8) is not
uniform in the system size L but grows with L through
kHk, and it possibly grows through the system-size
dependencies of κ, g, and r.
Transverse-field Ising model.—When drawing conclu-

sions based on a bound, it is instructive to investigate the
tightness of the bound by comparing to exact results. We
consider the Hamiltonian

H ¼
XL−1
i¼1

XL
j¼iþ1

hij þ
Γ
Z

XL
i¼1

σzi ð12Þ

of a spin chain with open boundary conditions and pair
interactions

hij ¼
1

Z
J

ji − jjα σ
z
iσ

z
j; ð13Þ

where σzi and σxi denote the z and x components of a Pauli
spin operator acting on lattice site i. We consider a coupling
coefficient of J ¼ 1 and set the external field to Γ ¼ 5. The
coupling strength decays with the distance ji − jj between
lattice sites like a power law with exponent α. The larger
α, the more local the interactions and the smaller the
locality parameter g. The normalization constant Z is
chosen such that kHk ¼ 1. This guarantees that, upon
variation of α, the speed of equilibration is affected only by
a change of locality but not trivially by a change of the
norm of H.
We study equilibration of the magnetization

M ¼ 1

L

XL
i¼1

σzi ; ð14Þ

for which the locality parameters take on the values κ ¼ 1
and r ¼ 1. The eigenstates jMji of M are products of
eigenstates of σz, with eigenvaluesMj ∈ f−L;−Lþ 2;…;
L − 2; Lg. For almost all initial states, the equilibrium
eigenstates of M correspond to eigenvalues Mj ≈ 0.
Figure 3 (left) compares numerical results for the time
evolution of Λjk, which are obtained by exact diagonaliza-
tion for a chain of L ¼ 8 spins, to the bound Bjk [Eq. (8)].
As is common for Lieb-Robinson-type bounds, Bjk over-
estimates Λjk substantially. The functional form of the
initial increase of the exact Λjk, however, is well captured
by Bjk. The timescale t�jk marks the end of the rapid increase
of ΛjkðtÞ, confirming the use of t�jk as a lower bound on teq.

To further compare t�jk and teq, we estimate teq for 10
random initial states with fixed amplitude jxkð0Þj2 ¼ 0.8,
where jMki is the nonequilibrium eigenstate with eigen-
value Mk ¼ 1 maximizing the distance to the equilibrium
value Mj ≈ 0. The estimation of teq is done by finding the
earliest time where the variance hψðtÞjðM − hMieqÞ2jψðtÞi
drops below 10% of its longtime average, which is a
procedure that captures the essence of our definition of
equilibrium further above. In Fig. 3 (right), we compare
t�jk and the numerically estimated teq for various α. For a
better comparison of the functional dependencies, teq has
been rescaled by a factor of 0.13. The results confirm
teq ≥ t�jk for all α, as well as the expected increase of the
equilibration timescale with increasing α. Moreover, the
estimate t�jk captures the functional form of the α

dependence of teq remarkably well.
We also compared our bounds to the exact dynamics of

disordered systems and systems with nonalgebraic decay of
coupling strength (not shown). In all examples, the validity
of the bounds Bjk and t�jk is confirmed, the initial increase
of BjkðtÞ captures the functional form of ΛjkðtÞ to the same
extent as in Fig. 3, and (except for specific choices of the
parameters) the α dependence of t�jk agrees qualitatively
with that of the measured teq.
Sketch of the proof of Eq. (8).—Starting from the bound

on the right-hand side of Eq. (7), we adapt a strategy used
by Arad et al. [19] and de Oliveira et al. [10] to derive a
bound on the matrix elements of a local observable in the
eigenbasis of a local Hamiltonian. Introducing the auxiliary
variable s ≥ 0, we use e−sOesO ¼ 1 and write the
Hamiltonian as ðHnÞjk ¼ hOjjesOHne−sOjOkie−sjok−ojj.
Using Hadamard’s formula

esOHne−sO ¼
X∞
l¼0

sl

l!
KðnÞ

l ð15Þ
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FIG. 3. Comparison of our bounds with exact results for the
transverse-field Ising model (12) on L ¼ 8 lattice sites. Left: The
bound Bjk (solid line) compared to Λjk (dashed line) as a function
of time for α ¼ 10. Right: Comparison of the timescale t�jk and the
estimated equilibration time teq, determined according to the
protocol described in the main text, as a function of α.
Error bars indicate standard errors resulting from averaging over
10 randomly chosen nonequilibrium initial states.
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with the l-nested commutator KðnÞ
l ¼ ½O;…; ½O;Hn� � � ��,

we obtain

ΛjkðtÞ ≤ e−sjok−ojj
X∞
n¼0

tn

n!

X∞
l¼0

sl

l!
kKðnÞ

l k: ð16Þ

Writing the Hamiltonian and the observable as sums over

local terms, most of the local commutators in KðnÞ
l vanish

and, by making use of combinatorial techniques detailed in
the Supplemental Material [25], we obtain

kKðnÞ
l k≤

Xminðl;nÞ

j¼1

�
l
j

	
n!

ðn−jÞ!ð2kOkÞlðkgrÞjkHkn−j; ð17Þ

where fljg denotes Stirling numbers of the second kind.
After some algebra detailed in the Supplemental Material
[25], we obtain

lnΛjkðtÞ ≤ ðkHk − kgrÞtþ kgrte2skOk − sjok − ojj: ð18Þ

Minimizing the right-hand side of Eq. (18) over s ≥ 0, we
arrive at our main result (8).
Conclusions.—By rewriting a quantum system as a

classical network on Hilbert space, we derived a Lieb-
Robinson-type upper bound on the spreading of a pertur-
bation across Hilbert space. Based on this rigorous
result (8), we provided a lower estimate of the equilibration
time of the corresponding quantum system. On the tech-
nical side, the progress reported in our work is the result
of a twofold change of viewpoint: firstly, the mentioned
interpretation of a quantum system as a classical network in
Hilbert space, to which classical Lieb-Robinson techniques
may be applied; and secondly, different from existing
results in the literature, the focus on a lower bound on
the equilibration time.
On the conceptual side, the main novelty of our work is

that the degree of locality of the Hamiltonian and observ-
able enters the bound (8). Quantified through the param-
eters κ, g, and r, the locality is believed to be a key player,
which is crucial in determining the equilibration time of a
quantum system. In the language of a classical network in
Hilbert space, locality implies sparseness of the network,
which in turn reduces the speed at which a perturbation can
travel across the network. Indeed, in the case of pronounced
locality, our bound predicts that the timescale t�jk in Eq. (9)
scales doubly logarithmic with the dimension of the Hilbert
space. Our results are confirmed by exact diagonalization
for small system sizes, where t�jk is not only found to lower
bound the observed equilibration times but also qualita-
tively captures some of their functional dependencies. The
rather weak notion of locality (1) that we made use of must
be considered as a first step towards physically realistic

estimates. Refinements that employ locality in a stronger
sense are a promising direction for future research.
Despite these evident successes, it is worth emphasizing

that the generality of our results necessarily implies that the
bounds, albeit valid, cannot be tight in all cases. Although
the actual equilibration time of the quantum system is
expected to depend on the specific observable and initial
state considered, the choice of the observable enters in
our bound only through the locality parameters κ and r,
and the choice of the initial state only enters through
jOk −Ojj. Considering two specific nodes xi and xj of
the classical network such that Oi ¼ Oj, it may be the case
that one of the two is less strongly connected to the rest
of the network, and accordingly equilibrates more slowly,
whereas our bound estimates the corresponding equilibra-
tion timescales of xi and xj to be identical.

M. K. acknowledges financial support by the South
African National Research Foundation through the
Incentive Funding Programme and the Competitive
Funding for Rated Researchers.

*danielnickelsen@sun.ac.za
†kastner@sun.ac.za

[1] J. von Neumann, Beweis des Ergodensatzes und des
H-Theorems in der neuen Mechanik, Z. Phys. 57, 30
(1929).

[2] H. Tasaki, From Quantum Dynamics to the Canonical
Distribution: General Picture and a Rigorous Example,
Phys. Rev. Lett. 80, 1373 (1998).

[3] N. Linden, S. Popescu, A. J. Short, and A. Winter, Quantum
mechanical evolution towards thermal equilibrium, Phys.
Rev. E 79, 061103 (2009).

[4] S. Goldstein, J. L. Lebowitz, C. Mastrodonato, R. Tumulka,
and N. Zanghì, Approach to thermal equilibrium of macro-
scopic quantum systems, Phys. Rev. E 81, 011109 (2010).

[5] A. J. Short and T. C. Farrelly, Quantum equilibration in
finite time, New J. Phys. 14, 013063 (2012).

[6] P. Reimann, Canonical thermalization, New J. Phys. 12,
055027 (2010).

[7] P. Reimann and M. Kastner, Equilibration of isolated
macroscopic quantum systems, New J. Phys. 14, 043020
(2012).

[8] C. Gogolin and J. Eisert, Equilibration, thermalisation, and
the emergence of statistical mechanics in closed quantum
systems, Rep. Prog. Phys. 79, 056001 (2016).

[9] T. Mori, T. N. Ikeda, E. Kaminishi, and M. Ueda, Thermal-
ization and prethermalization in isolated quantum systems:
A theoretical overview, J. Phys. B 51, 112001 (2018).

[10] T. R. de Oliveira, C. Charalambous, D. Jonathan, M.
Lewenstein, and A. Riera, Equilibration time scales in
closed many-body quantum systems, New J. Phys. 20,
033032 (2018).

[11] H. Wilming, M. Goihl, C. Krumnow, and J. Eisert, Towards
local equilibration in closed interacting quantum many-
body systems, arXiv:1704.06291.

PHYSICAL REVIEW LETTERS 122, 180602 (2019)

180602-5

https://doi.org/10.1007/BF01339852
https://doi.org/10.1007/BF01339852
https://doi.org/10.1103/PhysRevLett.80.1373
https://doi.org/10.1103/PhysRevE.79.061103
https://doi.org/10.1103/PhysRevE.79.061103
https://doi.org/10.1103/PhysRevE.81.011109
https://doi.org/10.1088/1367-2630/14/1/013063
https://doi.org/10.1088/1367-2630/12/5/055027
https://doi.org/10.1088/1367-2630/12/5/055027
https://doi.org/10.1088/1367-2630/14/4/043020
https://doi.org/10.1088/1367-2630/14/4/043020
https://doi.org/10.1088/0034-4885/79/5/056001
https://doi.org/10.1088/1361-6455/aabcdf
https://doi.org/10.1088/1367-2630/aab03b
https://doi.org/10.1088/1367-2630/aab03b
http://arXiv.org/abs/1704.06291


[12] L. P. García-Pintos, N. Linden, A. S. L. Malabarba, A. J.
Short, and A. Winter, Equilibration Time Scales of Physi-
cally Relevant Observables, Phys. Rev. X 7, 031027 (2017).

[13] S. Goldstein, T. Hara, and H. Tasaki, Time Scales in the
Approach to Equilibrium of Macroscopic Quantum Sys-
tems, Phys. Rev. Lett. 111, 140401 (2013).

[14] A. S. L. Malabarba, L. P. García-Pintos, N. Linden, T. C.
Farrelly, and A. J. Short, Quantum systems equilibrate
rapidly for most observables, Phys. Rev. E 90, 012121
(2014).

[15] Vinayak and M. Žnidarič, Subsystem dynamics under
random Hamiltonian evolution, J. Phys. A 45, 125204
(2012).

[16] F. G. S. L. Brandão, P. Ćwikliński, M. Horodecki, P.
Horodecki, J. K. Korbicz, and M. Mozrzymas, Convergence
to equilibrium under a random Hamiltonian, Phys. Rev. E
86, 031101 (2012).

[17] P. Reimann, Typical fast thermalization processes in closed
many-body systems, Nat. Commun. 7, 10821 (2016).

[18] S. Goldstein, T. Hara, and H. Tasaki, Extremely quick
thermalization in a macroscopic quantum system for a
typical nonequilibrium subspace, New J. Phys. 17,
045002 (2015).

[19] I. Arad, T. Kuwahara, and Z. Landau, Connecting global
and local energy distributions in quantum spin models on a
lattice, J. Stat. Mech. (2016) 033301.

[20] C. Marchioro, A. Pellegrinotti, M. Pulvirenti, and L. Triolo,
Velocity of a perturbation in infinite lattice systems, J. Stat.
Phys. 19, 499 (1978).
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