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We demonstrate the existence of conical interface deformations induced by a laser beam that are similar
to Taylor cones in the electrical regime. We show that the cone morphology can be manipulated by fluid
and laser parameters. A theory is proposed to quantitatively describe these dependences in good agreement
with experimental data obtained for different fluid systems with low interfacial tensions. Counterintuitively,
the cone angle is proved to be independent of the refractive index contrast at leading order. These results
open a new optofluidic route towards optical spraying technology—an analogue of electrospraying—and
more generally for the optical shaping of interfaces.
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One hundred years ago, in a pioneering work, Zeleny
observed the destabilization of a suspended conducting
liquid drop submitted to a sufficiently strong electric field
[1,2]. The interface takes a conical shape, followed by a jet
that usually breaks up into a spray of tiny droplets, a key
phenomenon for electrospraying and electrospinning tech-
nologies [3–5]. Such conical menisci were theoretically
understood by Taylor [6] and are now commonly termed
as “Taylor cones.” Beyond the surprising and fascinating
elegance of such a simple conical solution for a complex
mathematical problem involving deformable boundaries,
this Taylor cone is important for applications. Indeed, the
finite angle of the cone is a key parameter determining the
size of the emitted jet, and thus of the resulting droplets [7].
Taylor cones are thus an essential component in processes

as varied as the emission ofmonodisperse droplets [8], ink jet
printing [3,5], the design of nanostructures [9] and encap-
sulation techniques [10]. Taylor cones were naturally gen-
eralized to electrically ormagnetically induced deformations
of interfaces between fluids presenting different conductiv-
ities, dielectric constants or magnetic susceptibilities [11].
Depending on these properties, but also on the nature of the
field (either ac or dc) [12], the cone angle canvary over awide
range. Furthermore, conical shapes of fluid interfaces seem
even more general, since portions of cones naturally appear
in situations as varied as drops stretching [13], viscous break-
up of pendant drops [14], tip streaming by Marangoni stress
[15], or inertial jet eruption [16]. This suggests that various
types of excitatory fields are able to induce conical defor-
mations, as earlier suggested by Taylor himself [13]. In this
context, considering the developments on the manipulation
of fluids by light [17,18] and previous studies [19–21] where
conical shapes could be suspected, a natural and surprisingly
unresolved question is whether or not cones can be induced
by light as well.
The goal of this Letter is to demonstrate the emergence

of conical shapes in the optical regime and to characterize

their geometry. Using very different fluid systems, we show
indeed that above a critical radiation pressure exerted by a
continuous laser wave, soft interfaces deform and adopt a
conical shape. We propose a theory that correctly predicts
the cone angles for a wide range of fluid and excitation
parameters. Counterintuitively, we show that the cone angle
does not depend on the refractive index contrast, while it is at
the origin of the radiation pressure that induced the conical
deformation.
To observe optically induced cones, we consider a

continuous Gaussian laser wave that impinges a soft fluid
interface from the liquid of higher refractive index as shown
in Fig. 1(a). The laser beam is focused on the interface using
standard optical elements that can be adjusted to vary the
beamwaist ω0 at the interface. At low power, the interface is
gently deformed into a bell-shaped profile by optical
radiation pressure [Fig. 1(a)]. This is due to the transfer of
optical momentum of photons to the interface, as previously
described [22,23]. Above a critical beam power Pc, the
interface profile lengthens and sharpens, and a conical
deformation emerges [Fig. 1(b)].
To characterize the geometry of the interface, we

represent the local angle αi in Fig. 1(c) as a function of
the height z, i.e., the distance to the undeformed interface.
This curve clearly exhibits a plateau region that is absent
in the low power regime. This plateau demonstrates the
existence of an optically induced conical deformation and
defines its angle. To get insight in the mechanism at the
origin of the cone formation, we image the optical path of
the laser wave using specific optical filters [Fig. 1(d)]. The
intense reflection of the laser beam at the cone interface
tends to show that light is totally reflected inside the conical
structure, which thus acts as a self-induced funnel guide.
This is further confirmed in Fig. 1(c) by the fact that the
incident angle αi is always larger than the total reflection
angle [αi > αTR ¼ arcsinðn1=n2Þ] in the plateau region. We
anticipate that this total reflection condition is important to
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explain the formation of optically-induced cones in our
conditions.
To test the generality of optical liquid cones, we consider

three main experimental fluid systems that are transparent
at the used optical wavelength (optical absorption smaller
than 3 × 10−4 cm−1) and based on Winsor phases (toluene:
S1a–S1b, heptane: S2) and quasicritical microemulsions
(S3a–S3e). By varying chemical composition or temper-
ature, we obtain in the end eight subsystems denoted by
S1a–S1b, S2, S3a–S3e (see Supplemental Material [24–28]
for details). This enables us to vary the refractive index
contrast involved in the radiation pressure (Δn ¼ n2−
n1 ¼ 0.0129–0.1449) and the interfacial tension involved
in the restoring capillary pressure (γ ¼ 2.4 × 10−7 − 1.3×
10−5 N=m) over more than one order of magnitude.
Refractive indices for various systems were measured by
standard refractometry methods, while interfacial tensions
were determined by analyzing the viscous breakup dynamics

of liquid thread [29]. As illustrated in Fig. 1, stationary
optically induced cones are generated for all experimental
systems. Similar to electrified interfaces, these conical
shapes are very stable and robust for both turbid (S1, S3)
and nonturbid (S2) fluid systems. Remarkably, the conical
structure often emerges togetherwith a jet that emits droplets,
as illustrated at the bottom in Fig. 1(g). Importantly, as shown
in Fig. 1, we observe that the cone angle is specific to each
fluid system, indicating that fluid properties are important to
define the cone morphology.
We now quantify the effects of the laser parameters on the

cone angle. The edge of the cone is detected by a homemade
image analysis program that measures the cone semiangle
θc ¼ π=2 − αi in the plateau region [see Fig. 1(c)] after
averaging over several stationary profile pictures. In Fig. 2,
we show how θc depends on the incident laser power P at
various waists ω0 for system S1 as an example. To be as
accurate as possible, we note that increasing P of our laser
also results in an increase of thewaistω0 ¼ g(P;ω0ð0Þ) via a
function g, which is fully characterized in the Supplemental
Material [24], with ω0ð0Þ as the extrapolated waist at zero
power. As shown in Fig. 2, the cone semiangle increaseswith
the beam waist ω0 at a given power and slightly decreases
with the applied power. This indicates that laser parameters
are crucial for controlling the cone morphology.
To understand the physical mechanism at the origin of

the conical deformation, it is useful to start with the force
balance equation for an axi-symmetric stationary profile
[22,30]:

γκðrÞ − ΔρghðrÞ ¼ ΠradðrÞ; ð1Þ

(d) (e) (f) (g)

(c)

(b)

(a)

FIG. 1. (a) Sketch of the experiment: a laser beam (λ ¼ 532 nm
in vacuum) is focused at the interface with the objective O1
(Olympus x10) and deforms this interface by radiation pressure.
Deformation of the interface for P < Pc (Winsor toluene S1b
for ω0 ¼ 12.9 μm, P ¼ 1.53 W). (b) Conical deformation by
radiation pressure for P > Pc (Winsor toluene S1b for
ω0 ¼ 12.9 μm, P ¼ 1.55 W). (c) Typical variation of the incident
angle αi as a function of the height of deformation for P < PC
and P > PC. Note that the curve for P > Pc exhibits a clear
plateau. αTR is the total reflection (TR) incident angle. (d) Light
path revealing the total reflection mechanism inside the conical
deformation (microemulsion S3). (e)–(g) Conical deformations
for various experimental systems: (e) Winsor heptane S2 for
ω0 ¼ 12.2 μm, P ¼ 2.25 W, (f) microemulsion S3e for ω0 ¼
9.0 μm and P ¼ 2.89 W, and (g) jet and drop emission at the tip
of the cone for Winsor toluene S1b system with ω0 ¼ 8.8 μm and
P ¼ 1.06 W.

-1/2
Total reflection

FIG. 2. Semiangle θc of the cone for Winsor toluene system
S1b as a function of the power P and the beam waist ω0 of the
laser. ω0ð0Þ represents the laser beam waist extrapolated at zero
power (see the Supplemental Material [24]). The dashline
indicates the total reflection value π=2 − αTR. Inset: Cone semi-
angle rescaled by

ffiffiffiffiffiffi
ω0

p
versus laser power P in log-log scale.
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where both the Laplace pressure γκðrÞ and buoyancy
ΔρghðrÞ balance the optical radiation pressure ΠradðrÞ.
Here, r is the radial distance to the beam axis, h is the
height of the profile, g the earth acceleration, and κ is
the local curvature. The optical radiation pressure is given
for a continuous Gaussian wave (mode TEM00) by the
following:

ΠradðrÞ ¼
n2
c

2P
πω2

0

e
−2r2

ω2
0 δfðαiÞ; ð2Þ

where c is the light celerity, δ ¼ 2Δn=ðn1 þ n2Þ is the
relative index contrast between the two phases, and f is
a geometric function that describes the variation of the
radiation pressure with the local incident angle αi,
fðαiÞ ¼ cos2ðαiÞf1þ RðαiÞ − ½tanðαiÞ= tanðαtÞ�TðαiÞg=δ,
R and T being the reflexion and transmission Fresnel
coefficients and αt the refracted angle. This function f is
plotted in Fig. 3(a). Importantly, it displays a decreasing
behavior above the total reflection angle αTR, which means
that the more inclined is the interface the less efficient is the
radiation pressure. Therefore, above αTR, the intensity of
the radiation pressure is directly related to the local
inclination of the interface, which will be the determinant
to set the value of the cone angle.

We first describe the interface deformation at moderate
beam power. As the optical Bond number (defined by
using the beam waist as the characteristic length scale)
Bo ¼ ðΔρgω0

2=γÞ ≈ 0.001–0.2 is small, buoyancy can be
neglected in first approximation. Furthermore, as the
relative index contrast δ is also a small parameter,
the radiation pressure can be considered as constant over
a large range of inclination angles [i.e., f ≈ 1, see Fig. 3(a)].
With these approximations, the force balance Eq. (1) at low
powers becomes this:

γ

r
∂
∂r ðr cos θÞ ≈

2PΔn
πcω2

0

e−2r
2=ω2

0 : ð3Þ

This equation is readily integrated for a closed profile,
leading to cos θ ¼ PΔn=ð2πcγω0Þ(1 − expð−2u2Þ)=u
where u ¼ r=ω0. The self-consistency condition that
cos θ remains lower than unity for all r leads to the
definition of a critical power

Pc ≈ 2.2
πcω0γ

Δn
; ð4Þ

above which one should observe strongly deformed inter-
faces, with inclination angles of the order of the total
reflection angle. This condition is compatible with previous
analyses [21,31] and is also in good agreement with the
critical power values measured in our experiments (see
Fig. S3 in the Supplemental Material [24]).
Above the critical power Pc, a new region appears where

total reflection conditions hold, so that f ≈ 2θ2=δ, indicat-
ing that the radiation pressure depends on the local profile
slope. Moreover, in this region the opening angles θ are
small compared to one, a condition which is satisfied in all
our experiments. Hence, in this region the force-balance
equation can be considerably simplified and becomes

γ

r
¼ θ2

4n2P
πcω2

0

e−2r
2=ω2

0 ; ð5Þ

leading to:

θðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
πcγω0

4Pn2

r
Φ
�

r
ω0

�
; ΦðXÞ≡ eX

2

ffiffiffiffi
X

p : ð6Þ

The local angle in the total reflection region is therefore
proportional to the dimensionless function Φð·Þ, which is
plotted in Fig. 3(b). It exhibits a clear plateau characterizing
the conical deformation in the range r=ω0 ≈ 0.3–1. To fully
predict the cone angle variation with physical parameters,
we characterize the minimal half-opening angle in Eq. (6),
which is obtained for r=ω0 ¼ 0.5. We find this:

θ�c ¼ β

ffiffiffiffiffiffiffiffiffiffi
cω0γ

Pn2

r
; ð7Þ

(c)

(b)(a)

(d)

FIG. 3. (a) Variation of the f function with the incident angle αi
for different relative index contrasts δ ¼ 2.Δn=ðn1 þ n2Þ.
(b) Variation of the normalized cone angle as a function of the
normalized radial position r=ω0 for various liquid systems. The
solid line indicates the theoretical prediction Φð·Þ [see Eq. (6)].
(c) Comparison between a theoretical cone deformation (red line)
and an experimental deformation for microemulsion system
S3b for P ¼ 0.5 W and ω0 ¼ 5.8 μm. (d) Cone angle as a
function of γ=n2 for various systems and for a given ratio
ω0=P ¼ 4.57 μm=W. The line indicates the theoretical prediction
[Eq. (7)].
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with β ¼ e1=4
ffiffiffiffiffiffiffiffiffiffiffiffiðπ=2Þp

≈ 1.61. Importantly, this expression
predicts that the cone angle θc decreases with the applied
power P and increases with the waist ω0 as observed
experimentally.
Corresponding scalings in ω0 and P are experimentally

confirmed in the inset of Fig. 2 where all the data are
rescaled by

ffiffiffiffiffiffi
ω0

p
and collapse into a single master curve.

In Fig. 3(b), comparisons of the renormalized angle profiles
for various fluid systems show a good agreement with the
theory even if experimental profiles are more extended than
theoretical ones. Note that experimental angle profiles are
limited to r=ω0 ≥ 0.4 because a jet usually forms at the
cone tip, contrary to theoretical modeling which only
considers closed deformations. As explained in the
Supplemental Material [24], a discussion on the jet that
forms at the tip of the conical deformation is beyond the
scope of the present work, but we note that breakup and
drop formation are not expected to significantly affect the
profile in the conical region. For higher r=ω0, experimental
profiles also display slope discontinuities, corresponding in
the theory to the switching point where total reflection is no
longer satisfied (see Fig. S5 in the Supplemental Material
[24]). We then numerically calculate the full height profile
hðrÞ from Eq. (1), and superimpose it with the experimental
measurements in Fig. 3(c). In this example, despite the
difference at the cone tip, the theoretical profile fits
reasonably well the experimental deformation (without
any fitting parameters). This demonstrates the ability of
our model to describe the radial variation of the cone angle.
We then test the scaling with interfacial tension in Fig. 3(d),
where we compare predictions to the experimental cone

angles for all the systems at a given ratio ω0=P.
Remarkably, the model is also in good agreement with
the experimental data over almost two decades in interfacial
tension. This strongly supports that the characteristic cone
angle is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cω0γ=Pn2

p
as suggested by Eq. (7).

To further confirm this model, we plot in Fig. 4 the cone
semiangle θc for the eight experimental systems inves-
tigated here for all the experimental conditions as a function

of the characteristic cone angle
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cω0γ=Pn2

p
. Over more

than one decade (see also the same data in linear scale in the
inset of Fig. 4), all the data collapse into a single master
curve despite some inherent dispersion of data, in particular
close to the critical power Pc where the interface sensitivity
to excitation is the largest. The best fit is θc ¼
1.86

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cω0γ=Pn2

p
, which is very close to the model pre-

diction θc ¼ 1.61
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cω0γ=Pn2

p
[see Eq. (7)]. The agreement

is even reinforced considering that no adjustable parameter
is used in the model. Consequently, conical deformations
can be fully controlled with both fluid properties and
excitation parameters.
Counterintuitively, the model predicts that the cone angle

θc does not depend on the relative index contrast δ [see
Eq. (7)]. Indeed, as shown in Fig. 5(a), as soon as the
critical power is reached, the minimal deformation angle
minðθÞ switches to a single behavior independent of δ.
This is due to the independence of the radiation pressure
with the refractive index contrast in the total reflection
regime [see Eq. (5)], as opposed to the normal incidence
case. However, the refractive index contrast Δn remains
essential to set the critical power Pc to observe a cone.
We now investigate whether gravity effects could be

responsible for deviations between experimental data and
theory. Gravitational effects can be evaluated by forming
the ratio between the buoyancy Δρgh and the characteristic
Laplace pressure γ=ω0. Since h ∼ ω0=θ�c in the conical
region, the relevant dimensionless parameter is χ ¼
Δρgω2

0=ðγθ�cÞ ¼ Bo=θ�c. Intuitively, increasing gravitational
effects should flatten the deformation and thus increase the
cone angle θc. As explained in the Supplemental Material
[24] by a perturbation analysis, the cone semiangle is

FIG. 4. Experimental cone angles versus the characteristic cone
angle

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cω0γ=Pn2

p
for all the investigated experimental systems.

The best fit is θc ¼ 1.86ðcω0γ=Pn2Þ0.5 whereas the dashed line
refers to Eq. (7). Inset: same plot in linear scales.

(a)

*

 =0.01
 =0.04
 =0.1

(b)

FIG. 5. (a) Theoretical minimal angle of the deformation
without gravity effects for various refractive index constrast.
(b) Rescaled cone angle θnum=θ�c numerically obtained compared
with the perturbative result θ ¼ θ�cð1þ νχÞ as a function of the
χ ¼ Bo=θ�c parameter for P=Pc ¼ 1.35.
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expected to vary as θ ¼ θ�cð1þ νχÞ, where ν ≃ 0.14–0.18 is
a weakly varying parameter. These results are confirmed in
Fig. 5(b) by comparing with the complete numerical reso-
lution of the force balance equation [Eq. (1)] for various
index ratio. The numerical results in Fig. 5(b) collapse into a
singlemaster curve, validating this perturbation analysis.We
evaluate the deviations from the analytical results without
gravity [Eq. (7)] to be at most 30% for the largest values of
χ in our experiments (χ ≈ 10−2 − 2), confirming that gravity
can be neglected at leading order.
To conclude, we have experimentally and theoretically

demonstrated the existence of optically induced conical
deformations. The cone morphology is controlled by the
fluid properties and laser parameters. The analytical and
numerical analyses quantitatively predict an optical cone
semiangle in good agreement with measurements over a
wide range of parameters for several liquid systems. Such
cones can be considered as “optical analogues” of Taylor
cones, in the sense that the structure of the electromagnetic
field near the interface results from its interference with
refracted ray and is strongly coupled to its deformation due
to total reflection conditions. As already demonstrated for
Taylor cones [7], we anticipate that the properties of these
static optical cones will be a key parameter to control the
hydrodynamic jet at its tip as suggested by Fig. 1(g). Our
results quantitatively establish the first step towards opto-
spraying and a new optical control of interfacial properties
and interfacial morphologies. This Letter also advances a
new example showing that conical shapes corresponds to a
universal form when liquid interfaces are stretched beyond
linearity [13].
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