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Excitable waves arise in many spatially extended systems of either a biological, chemical, or physical
nature due to the interplay between local reaction and diffusion processes. Here we demonstrate that similar
phenomena are encoded in the time dynamics of an excitable system with two, hierarchically long delays.
The transition from 1D localized structures to curved wave segments is experimentally observed in an
excitable semiconductor laser with two feedback loops and reproduced by numerical simulations of a
prototypical model. While closely related to those found in 2D excitable media, wave patterns in delayed
systems exhibit unobserved features originating from causality related constraints. An appropriate
dynamical representation of the data uncovers these phenomena and permits us to interpret them as
the result of an effective 2D advection-reaction-diffusion process.
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Excitable media are spatially extended, nonequilibrium
systems in which a localized nonlinear response can
propagate throughout the space as an undamped wave
[1–3]. The local dynamics is characterized by a state that is
linearly stable, but susceptible to finite-amplitude pertur-
bations. The return to equilibrium entails a large excursion
in the phase space corresponding to the emission of a spike
of well-defined amplitude and duration. Such temporal
behavior in conjunction with a suitable transport process
gives rise to a wealth of spatiotemporal structures, includ-
ing solitary pulses in one dimension, expanding targets
[4,5], wave segments [6–9], and rotating spirals [10] in two
and scroll waves in three spatial dimensions, respectively.
These patterns are among the most widespread examples of
self-organization processes in active media. Excitable
waves are found in chemical systems, the most familiar
of which is the Belousov-Zhabotinsky reaction [5], but also
in the context of combustion theory [11] and dendritic
growth [12]. They play a fundamental role in the functional
aspects of many biological systems, such as nerve and
cardiac cells [13–15], and have been also observed in
experiments on nematic liquid crystals [16], discharge
plasmas [17], and semiconductor microcavities [18].
In all these cases the spatial coupling supporting wave

propagation is provided by diffusionlike processes, and the
wave dynamics is described in terms of reaction-diffusion
equations [1,3]. Here, excitable wave patterns are demon-
strated in a radically different scenario, i.e., in the dynamics
of a purely temporal system with two hierarchically long
time delays.
When the delay is much longer than any other character-

istic timescale, the dynamics of a delayed system can be
mapped into an equivalent spatiotemporal representation

(STR) (for a recent review see Ref. [19]). In the single time-
delay case, the STR is obtained by mapping a delay-time
segment onto a pseudospatial cell and the index numbers of
the subsequent delay cells into a pseudotime variable [20].
This approach had considerable success, as complex
behavior in the time domain often results into simpler
spatiotemporal patterns in the new representation [21–29],
enforcing its physical validity.
The generalization of the STR to the case of multiple

long delays has been first tackled in Ref. [30]: essentially
new phenomena could take place owing to the higher
number of pseudospatial dimensions involved. For in-
stance, in Stuart-Landau models with two-delays, spiral
defects and defects turbulence are shown to occur [30] and
two-dimensional chimera states and dissipative solitons
have been recently observed [31].
In this Letter, we investigate the effects of two hierarchi-

cally long delayed feedback loops on an excitable semi-
conductor laser. The temporal dynamics is shown to encode
the transition from 1D localized structures to expanding
wave segments. These traveling waves emerge as the
strength of the two feedbacks becomes comparable, and
represent the 2D generalization of propagating pulses in
this class of systems. While possessing many properties of
excitable waves, the segments present negative curvature
and remain confined to a well-defined propagation cone.
By means of a proper representation introduced in Ref. [32]
here generalized and applied to experimental data, we
construct an advection-reaction-diffusion model of our
system, where the observed wave dynamics is reproduced
in the limit of strong advection.
The experimental setup is shown in Fig. 1. A vertical

cavity surface emitting laser (VCSEL) is operated in a

PHYSICAL REVIEW LETTERS 122, 174102 (2019)

0031-9007=19=122(17)=174102(6) 174102-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.122.174102&domain=pdf&date_stamp=2019-05-03
https://doi.org/10.1103/PhysRevLett.122.174102
https://doi.org/10.1103/PhysRevLett.122.174102
https://doi.org/10.1103/PhysRevLett.122.174102
https://doi.org/10.1103/PhysRevLett.122.174102


regime of polarization bistability. The two linear polar-
izations are separated by means of a half-wave plate and a
polarizing beam splitter and then their intensities are
monitored by photodetectors (1 MHz bandwidth). The
laser threshold is at 6.9 mA. Transitions between the two
states and a hysteresis cycle (between 7.15 and 7.4 mA) are
observed as the pump current J0 is slowly varied. The
signal of one polarization is low-pass filtered (filter cutoff
around 1 kHz) and summed to the dc pump current. As a
result, whenever a polarization switch occurs, the current
will start a slow evolution (with a characteristic timescale
T0 in the millisecond range determined by the low-pass
filter) leading to the emission of an excitable spike [33].
The signal of the other polarization is sampled and retarded
with delays T1 ≫ T0 and T2 ≫ T1 by a reconfigurable A/
D-D/A board with a bandwidth of 50 kHz. The two delayed
output are then recombined with weights η and 1 − η and
fed back into the VCSEL through the pump current with a
gain g. Typical photodiode signals associated to polariza-
tion switches are of the order of 300 mV, corresponding to
excursions of the delayed feedback current at the laser input
of 0.12 mA.
The dynamics of the system can be described by a simple

prototypical model [33], here generalized to the case of two
delayed feedbacks

_x ¼ FðxÞ þ J0 þ αzþ g1xT1
þ g2xT2

þ ζ;

_z ¼ −εðz − yÞ; ð1Þ

where xTi
¼ xðt − TiÞ, i ¼ 1, 2 are the delay terms, J0 is

the dc pump current and fxðtÞ; yðtÞg are proportional to the
polarizations signals. As such, the relation xðtÞ þ yðtÞ ¼ I
approximately holds, where I is proportional to the photo-
current relative to the total intensity of the laser. zðtÞ is a
low-pass filtered function (with a cutoff frequency ε) of y
that is added to the bias current with the coupling
coefficient α. The nonlinear function FðxÞ ¼ x − x3 is a
phenomenological potential governing the mode hopping
between polarization modes [22,34], g1 ¼ gη and g2 ¼
gð1 − ηÞ are the gain coefficients of the feedback loops, and

ζ is a δ-correlated, white Gaussian noise. By introducing
the new parameter J ¼ J0 þ αI and the variable
w ¼ J0 þ αz, Eqs. (1) become

_x ¼ FðxÞ þ wþþg1xT1
þ g2xT2

þ ζ;

_w ¼ −εðw − J þ αxÞ: ð2Þ
The model (2) with g1;2 ¼ 0 has the form of the well-known
FitzHugh-Nagumo (FHN) equations [35], one of the
paradigmatic models displaying excitability.
In Figs. 2(a)–2(c) we show three time series of the optical

intensity for different values of the asymmetry η and the
same gain. For η ≈ 1, the feedback term with delay T1 is
dominant. As a result, when the system is initialized in an
inhomogeneous initial condition, we observe a periodic
sequence of spikes with period close to T1 [see Fig. 2(a)].
Conversely, at low η values, the period of the pulse train
approaches T2 [see Fig. 2(c)]. When both delayed terms are
significant, an intermediate regime takes place where
spikes separated from each other by nearly T1 are emitted
in bursts with a period T2 [Fig. 2(b)]. Unlike the cases
shown in Figs. 2(a), 2(c) where the waveforms are periodic,
here the number of spikes forming each burst increases
with time [red trace in Fig. 2(b)] thus reducing the duty
cycle of the sequence. This typically occurs over timescales
of several T2.

FIG. 1. Experimental setup. Vertical-cavity surface-emitting
laser; λ=2: half-wave plate; polarizing beam splitter (PBS); photo
detector(s) (PD1,2). The delayed feedback is realized sampling
the electric signal from the detector PD1 with a A/D-D/A board
hosted by a PC driven by a real-time Linux OS.

(a) (b)

(d) (e) (f)

(g) (h) (i)

(c)

FIG. 2. Experimental time series and snapshots of the STR of
the laser intensity for different values of the asymmetry: (a),
(d) η ¼ 0.9; (b),(e) η ¼ 0.4, (c),(f) η ¼ 0.1. (b) The two sets of
bursts plotted as dark and red (light) are snapshots of duration
3T2 separated by 10T2. The pump current is fixed at 7.2 mA. The
delays are T1 ¼ 91 ms and T2 ¼ 20.9 s. Snapshots of the STR as
obtained by numerical integration of Eqs. (2) for (g) η ¼ 0.9,
(h) η ¼ 0.4, (i) η ¼ 0.1. Other parameters: J ¼ −0.65, g ¼ 0.2,
α ¼ 1.5, ε ¼ 0.05. See videos in the Supplemental Material [36]
for this and the following figures.
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The corresponding spatiotemporal plots are obtained
through the transformation

t ¼ σ1 þ σ2T1 þ θT2; ð3Þ

which generalizes the STR for systems with two hierarchi-
cally long delays, T0 ≪ T1 ≪ T2 [30]. The time series are
cut into consecutive segments of length T2, each labeled by
the integer θ, and further divided into smaller intervals of
length T1 and index number σ2 ∈ ½0; T2=T1Þ. In this
representation, σ1 ∈ ½0; T1Þ and σ2 act as pseudospatial
variables, while θ plays the role of the pseudotime
coordinate [30]. We remark that we are interested in the
bulk dynamics, i.e., for T1, T2=T1, and tobs=T2 going to
infinity, where tobs is the observational time.
In Fig. 2(d) we show the STR corresponding to the

regime shown in Fig. 2(a). Since g2xT2
≪ g1xT1

, the time
variable can be written as t ≈ σ1 þ σ2T1, with fσ1; σ2g
acting as pseudospace and -time, respectively. We thus
expect the dynamics to be essentially confined in one
spatial dimension. What is in fact shown in Fig. 2(d) is
nothing but a different representation of the patterns
observed in excitable systems with a single time delay
[27,28,33], where 1D localized structures propagate
through the ðσ1; σ2Þ pseudo spacetime and θ only arbitrarily
labels snapshots over intervals T2. An analogous situation
occurs at small η values, where the localized structure now
lies in the orthogonal σ1 − θ plane. The spot propagating
along σ1 shown in Fig. 2(f), thus corresponds to a strobo-
scopic mapping of the dynamics with a period T2.
As the two feedback terms become comparable, 1D

localized structures evolve into 2D wave patterns: the STR
indeed shows a curved wave segment [Fig. 2(e)]. The local
excitation spreads across the pseudospace indicating the
existence of an effective 2D spatial coupling mechanism.
In Figs. 2(g)–2(i) we report the numerical simulations of

Eq. (2) for parameters corresponding to the experimental
conditions. The results agree with the observations, sug-
gesting that the above findings are indeed generic features
of delayed excitable systems.
For higher pump values, corresponding to a lower

excitability threshold, noise fluctuations sporadically trig-
ger the excitations [see Figs. 3(a)–3(b)]. The resulting wave
segments propagate without decrement with a speed that is
insensitive to initial conditions and annihilate after collision
(due to refractoriness).
These features are immediately reminiscent of wave

propagation processes in reaction-diffusion media [1,4].
Nevertheless, here the patterns present remarkable
differences. In 2D homogeneous media the propagation
takes place symmetrically around the origin of the excita-
tion, leading to the emission of a target wave. In fact, we
observe excitations in the form of negatively curved
(concave) wave segments. While wave fronts and even
wave segments with negative curvature have been observed

hitherto in spatially extended media, they typically arise in
peculiar situations, e.g., when convex waves collide [37,38]
or in media with a negative effective diffusion [39].
Such an anomalous behavior can be elucidated by means

of the recently introduced dynamical representation (DR)
[32], here generalized to the case of two delays. The DR
employs an alternative definition of equivalent space and
time variables with respect to the STR, considering fσ2; θg
as spatial and σ1 as temporal variables, respectively. We
denote the corresponding spatial and temporal variables as
fξ1; ξ2g and τ. This choice allows for an appropriate
handling of causality issues inherent to long-delay systems,
as demonstrated in the linear case through validation of the
Kramers-Krönig relations [32]. The two representations are
visualized in Fig. 4(a), where we plot as an example the
isosurface extracted from measurements of a single wave
segment. The orientation of the image planes cutting the
data identifies the direction of evolution and thus the two
different representations. Cuts perpendicular to the θ
direction correspond to the standard STR, in which wave
segments possess a negative curvature (left panel). The
patterns evolve over the θ direction on a domain with
almost periodic boundaries on σ1;2 which, in analogy to
spatially extended systems, lead to the commonly adopted
identification of σ and θ as pseudospace and -time,
respectively. The DR is shown in Fig. 4(a) (right panel),
where the vertical image planes now identify τ as the new
temporal axis. Although the boundary conditions of the
STR appear as the most natural, it has been shown that the
bulk dynamics (i.e., far from boundaries) is more properly
obtained in the new representation [32]. Wave segments
indeed become convex as commonly observed in reaction-
diffusion models. This is clearly evidenced in Fig. 4(b)
where four τ snapshots of the dynamics in the ξ1 − ξ2
pseudospace are plotted. The figure also reveals that the

(a) (b)

FIG. 3. Snapshots in the STR showing the noise-induced
generation, propagation, and interaction of excitable wave seg-
ments. (a) Experiment: the pump current is 7.35 mA. (b) Simu-
lation of model (2) with a noise amplitude of τ ¼ 10−2. Other
parameters as in Fig. 2.
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wave segment remains confined to a specific propagation
cone. The dashed oblique and vertical lines corresponds to
the trajectories followed by the 1D localized structures
shown in Figs. 2(d) and 2(f), respectively, and both relate to
causality. The vertical line marks a causal boundary of the
pseudo spacetime, as by construction no world line could
ever cross it independently on the parameters or system
under consideration. The line for η ¼ 1 is instead related to
the intrinsic drift present in long-delayed systems, which
again is due to causality [19] as evidenced by the maximal
comoving Lyapunov exponents [21,40]. Such drift depends
on the feedback gain g. Finally, the dotted lines indicate the
trajectory of a 1D localized structure obtained setting g2 ¼
0 and η ¼ 0.4, which is the asymmetry parameter corre-
sponding to the 2D patterns shown in the figure.
Remarkably, the DR provides an explicit rule for gen-

erating the equivalent spatiotemporal dynamics. Using
Eq. (3) rewritten in the DR and defining fuðξ1; ξ2; τÞ;
vðξ1; ξ2; τÞg ¼ fxðtÞ; wðtÞg, Eqs. (2) become

∂τu ¼ FðuÞ þ vþ g1uðξ1; ξ2 − 1; θÞ þ g2uðξ1 − 1; ξ2; τÞ;
∂τv ¼ −εðv − J þ αuÞ; ð4Þ

where the delayed terms turn into nonlocal asymmetric,
spatial couplings which break the fξ1; ξ2g symmetries. A
description in terms of partial differential equations can be
thus obtained by formally expanding the nonlocal terms as

uðξ1 − 1; ξ2; τÞ ≈ uðξ1; ξ2; τÞ − ∂ξ1uðξ1; ξ2; τÞ

þ 1

2
∂2
ξ1ξ1

uðξ1; ξ2; τÞ − � � � ; ð5Þ

and similarly for uðξ1; ξ2 − 1; τÞ. As discussed in Ref. [32]
the validity of the expansion (5) relies on the smoothness of
the solution u over correlation lengths L1;2 ≫ 1, which in
general cannot be determined in advance.
Expanding up to second order we obtain

∂τu ¼ ð1þ gÞu − u3 þ v − ðvd ·∇Þuþ∇ · ðD∇uÞ;
∂τv ¼ −εðv − J þ αuÞ; ð6Þ

where ∇¼ð∂ξ1 ;∂ξ2Þ, vd¼ðg1;g2Þ and D¼diagðg1=2;g2=2Þ
is a 2 × 2 diagonal matrix. Equation (6) is a spatially
extended FHN model with advection and anisotropic
diffusion. Except for anisotropy, the normal velocity of a
wave front depends linearly on its local curvature and the
flow velocity and on the square root of the diffusion
coefficient via the eikonal equation [9,37,41]. Here, both
the flow vector vd and the diffusion tensorD depend on the
gain coefficients g1;2. For high values of g we thus expect
the wave propagation to be mainly determined by the
advection term and front curvature.
In Fig. 5 (left) we report the excitable wave dynamics as

obtained from Eq. (6) for three values of the parameter g
and isotropic diffusion (η ¼ 0.5). At sufficiently low values
of g, we observe the propagation of a target wave as in 2D
reaction-diffusion systems with no advection. A substan-
tially different behavior is found when g is increased. The
wave is initially deformed, with a wave front velocity that is
larger in the direction of the flow and then, beyond a critical
value of the gain the front propagating upstream is sup-
pressed leading to wave segment traveling in the opposite

(a)

(b) (c)

FIG. 4. (a) Spatiotemporal representations. Experimental iso-
surface extracted from data showing the propagation of a single
wave segment as in Fig. 2. Horizontal cuts, perpendicular to the θ
direction correspond to snapshots in the STR while vertical image
planes correspond to snapshots in the DR. (b) Snapshots of
experimental (every 0.39 ms) and (c) numerical (every 25τ steps)
wave segments’ propagation in the new representation. Param-
eters as in Fig. 2.

FIG. 5. Left panels: snapshots of the excitable wave dynamics
at times t ¼ 25, 55, and 85 obtained from Eqs. (6) for η ¼ 0.5.
From top to bottom: g ¼ 0.01, g ¼ 0.08, g ¼ 0.2. Right panel:
snapshots of wave segments for g ¼ 0.2 and η ¼ 0.4 from model
(2) (see also Fig. 4) and from Eqs. (6) (black contour curves at
half maximum).

PHYSICAL REVIEW LETTERS 122, 174102 (2019)

174102-4



direction. Similar phenomena have been previously
reported in reaction-diffusion models with a shear
flow [42,43].
In Fig. 5 (right) we compare the patterns obtained from

the delay model (2) and the spatially extended system (6).
While some discrepancies are found at their extrema, the
waves show a good qualitative agreement not only for
velocity, but also for duration and curvature. On the other
hand, targets and their transition to wave segments have
never been observed either in the delayed model (2) or
experimentally for any value of the system parameters. This
is due to the fact that the pseudospatial, nonlocal couplings
reflect the unidirectional nature of time-lag feedbacks. As a
consequence, they induce a symmetry breaking that con-
fines the propagation to specific spatial regions, which
cannot be reproduced by solely a second order expansion of
the nonlocal terms.
In conclusion, we have shown both experimentally and

theoretically the occurrence of traveling wave segments in
an excitable system with two hierarchically long delays.
The waves emerge as the two delay terms become com-
parable, i.e., in the presence of a two-dimensional pseudo-
space and thus represent the 2D analogue of one-
dimensional propagating pulses. These phenomena are
disclosed by means of a proper dynamical representation,
here generalized to higher dimensions and tested with
experimental data. Remarkably, the reconstruction natu-
rally gives rise to a spatially extended model of the
dynamics thus establishing a link with standard descrip-
tions. Our results open the way to further studies on
reaction-diffusion waves in delay setups, analogous e.g.,
to in-homogeneous media, involving higher pseudospatial
dimensions or curved surfaces [44]. We also expect that the
possibility of finely tuning the effective spatial dimension-
ality of the system could unveil new pattern-formation and
self-organization processes.
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