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Observation of Anomalous 7 Modes in Photonic Floquet Engineering
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Recent progress on Floquet topological phases has shed new light on time-dependant quantum systems,
among which one-dimensional (1D) Floquet systems have been under extensive theoretical research.
However, an unambiguous experimental observation of these 1D Floquet topological phases is still lacking.
Here, by periodically bending an ultrathin metallic array of coupled corrugated waveguides, a photonic
Floquet simulator was well designed and successfully fabricated to mimic the periodically driven Su-
Schrieffer-Heeger model. Intriguingly, under moderate driven frequencies, we report the first observation
of the anomalous Floquet topological # mode, propagating along the array’s boundary. The different
evolutionary behaviors between static and nonstatic topological end modes have been clearly demonstrated
by the microwave near-field experiment. Furthermore, the experiment in the fast-driving regime also
reveals the universal high-frequency behavior in driven systems. Our photonic simulator can serve as a
versatile testing ground for various phenomena related to time-dependant 1D quantum phases, such as

Thouless pumping and dynamical localization.
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Introduction.—Recently, following the development of
topological insulators [1,2], it has been shown that periodic
perturbations (or modulations) can be used to realize new
engineered topologically nontrivial phases not accessible in
static equilibrium systems. This promising area of research,
termed as “Floquet engineering” [3—10], has motivated
growing interest in periodically driven quantum systems,
and has been employed in condensed-matter systems
[11-14], ultracold atom optical lattices [15,16], spin
systems [4,9], time crystals [17-20], and photonic simu-
lations [21-27]. Intriguingly, recent theoretical studies have
demonstrated that the Floquet quasienergy spectra of
periodically driven systems exhibit richer topological
structures and invariants than their nondriven counterparts
[28—44], attaching to the gaps of quasienergy bands, such
as Floquet-Majorana end states [45-48], topologically
nontrivial zero or 7 states [33-35], and topological singu-
larities [37]. However, finding materials that hold such
Floquet-engineered topological phases remains a serious
challenge in condensed-matter physics [3,4,49,50].

Inspired by great successes in discoveries of topological
phenomena in artificial quantum systems, such as ultracold
atoms and photonic systems [51-54], many researchers
have begun to explore experimental possibilities of achiev-
ing nonstatic engineered topological states in these systems
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with high structural flexibility and tunability. For example,
two-dimensional (2D) photonic and phononic Floquet
topological phases (FTPs) have already been realized
[55-57], with clear observations of Floquet topological
edge states. However, experimental realizations of the
seemingly simpler one-dimensional (1D) FTP are still rare,
not to mention an unambiguous demonstration of corre-
sponding 1D anomalous Floquet end modes (FEMs).
Moreover, the realistic dynamic evolution of the FEMs
has remained unclear so far, though it is assumed to be
different from its static counterpart.

To address these problems, in this Letter, we designed
and fabricated a photonic Floquet simulator (PFS) to mimic
a typical 1D Floquet system, namely, the periodically
driven Su-Schrieffer-Heeger (SSH) model [33-35], through
periodically bending ultrathin metallic arrays of coupled
corrugated waveguides, which support spoof surface plas-
mon polaritons at microwave to infrared wavelength. By
adjusting the bending profiles of the waveguide array and
the initial field inputs, the Floquet topological 7 mode was
experimentally observed and theoretically verified, which
propagates along the array’s boundary. We also give a clear
demonstration of the different evolutionary behaviors
between the anomalous 7 mode and its static counterpart
end mode (i.e., zero mode). In addition, in the fast-driving
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regime, our simulator reveals the universal high-frequency
behavior prevailing in Floquet engineering [3]. Our
PES provides a versatile platform for investigating
various phenomena related to time-dependant 1D quantum
systems, such as Thouless pumping of light [58], and
dynamical localization [16].

Periodically driven SSH model.—The original SSH
model [59] is a well-known 1D topological structure with
two degenerate ground states differing by the relative
strength between intracell and intercell hoppings. To study
the periodically driven SSH model, we bend the wave-
guides periodically along their propagating direction z
which now acts as the synthetic time dimension [55].
As illustrated in Fig. 1(a), two neighboring waveguides
are coupled with opposite axis offsets, xy(z) =
+Ajcos[(2nz/A) + 6y, where Ay (= 0.8 mm) and A
denote the amplitude and period of the sinusoidal bending,
respectively, and 6, is the initial phase determined by the
starting “time” zy. Through the coupled-mode theory
[21,25,60-62], the waveguide array can be mapped into
an effective 1D time-periodic tight-binding-approximated
Hamiltonian as

N

N-1
H(z)= Zﬂi(z)cfci + Z(KO +(=1)'Ak(z))cl ¢ +Hee.
(1)

Here, N is the number of waveguides, f;(z) is the effective
propagation constant which can be reasonably treated as a
constant in the weak-guidance approximation (WGA)
[21,25,62]. For simplicity, this constant shift term will be
safely neglected in the theoretical analysis. The second term
in Eq. (1) represents couplings between nearest-neighbor
(NN) waveguides with a constant (staggered) coupling
strength k (Ax(z)). According to the WGA, the NN coupling
strength x mainly depends on their distance G(z), with the
relation shown in Fig. 1(b). In our configuration, the NN
spacing G(z) = gy £ 24, cos[(2nz/A) + 60,), where g,
(2.6 mm) is the initial spacing without bending.
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FIG. 1. (a) Schematic illustration of periodically bent ultrathin
metallic waveguides, with a cosine modulation of the spacing G
between two adjacent waveguides in the propagation direction z.
Inset: Nllustration of the “H”-shape structure, with the parameters
givenby P =2 mm, H =4 mm, a = 0.8 mm, and W = 1 mm.
(b) The effective coupling constant « as a function of G for the
input microwave field with frequency 17 GHz.

Consequently, x can be approximated as x, £ 5k cos[(27z/
A) + 6y, with the optimal parameters given by kg~
0.042 mm~' and 6k ~ 0.02 mm~'. Note that the staggered
term Ax(z) is periodically modulated, and the Hamiltonian
H(z) in Eq. (1) thus exactly mimics the periodically driven
SSH model with tunable time-periodic NN couplings.

Experimental results.—In our experiments, ten wave-
guides were coupled into an array with propagation distance
L =400 mm (numerical simulations of the L = 800 mm
waveguides are provided in the supplemental materials
[62]). The driven frequency is given by w =2x/A =
nawy, where A corresponds to the bending period, n, is
the total number of periods within L, and the characteristic
frequency is defined as w; = (2z/L). For fixed L, n, was
adjusted to investigate various frequency-dependent non-
static phenomena related to the driven SSH model [33-35].
Additionally, unless otherwise specified, we set 6, = 0.

We start from the high frequency limit where the bending
period A is much smaller than the effective coupling length.
In this case, the time-periodic staggered NN coupling is
smeared out due to its fast oscillating behavior, thus
rendering the system similar to that composed of straight
waveguides with identical NN couplings, which obviously
belongs to the trivial phase [62]. A waveguide array with a
representative @ = 20w, (~0.314 mm™') in this high-
frequency range was fabricated, as illustrated in Fig. 2(a),
to carry out the near-field measurement of the amplitude
profile after injecting a microwave of 17 GHz from the
upmost boundary waveguide. As expected, this field evo-
lution pattern resembles that of straight coupled waveguides
with identical NN couplings, as presented in Fig. 2(b) for
comparison. The minor differences between local details of
propagation patterns for the two cases may stem from
imperfect “H”-shape structures in the fast-varying bending
profile (see Fig. S8 [62]). Note that the high-frequency
drivingis a “do-nothing” effect here, in contrast to the case of
dynamic localization obtained in high-frequency driven
quantum-mechanical lattice models with electromagnetic
fields [16].

Intriguingly, as we gradually decrease the driven
frequency to the range w =2~5w; (i.e., 0.0314-
0.0785 mm™'), a quite distinct propagation field pattern
arises along the array’s boundary, as exemplified by the
@ =3w; (0.0471 mm~!) structure with corresponding
experimental results in Fig. 2(c). The injected microwave
no longer spreads into the bulk array, but instead is mainly
localized within the two waveguides at the upper boundary.
The localized field profile exhibits a periodic oscillation
pattern in its distribution between the two boundary wave-
guides. This anomalous edge mode is the central achieve-
ment of our work, which will be theoretically proved as the
long pursued Floquet 7 mode predicted in the Floquet SSH
model [33-35]. To further reveal its difference from the
well-known zero-mode edge state of the static SSH model,
we fabricated an array of dimerized straight waveguides
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(From up to down in each figure) Snapshots of the fabricated samples, simulations by the CST microwave studio simulation

software, and near-field measurement of the field profile after injecting the microwave from the upmost boundary waveguide, under
different driving conditions with the same length L = 400 mm, waveguide number N = 10, and initial phase 6, = 0. Results for curved
waveguides with (a) n, = 20 and (c) n, = 3, and for straight waveguides (n, = 0) with (b) identical spacings G = 2.5 mm and

(d) dimerized spacings between NN waveguides.

with time-independent staggered NN couplings [see
Fig. 2(d)], which lies in the topologically nontrivial phase
[25,59]. The experimental measurement in Fig. 2(d) shows
that the injected microwave always propagates along the
boundary waveguide without scattering into the bulk or
displaying any oscillation in its amplitude distribution, in
striking contrast to the nonstatic edge mode.

Theoretical analysis.—To verify the existence of the
anomalous edge mode, we explicitly calculate the topo-
logical invariant of the quasienergy spectrum of our system
to determine its phase diagram by using Floquet theory.
The time evolution operator of the system is given as

U(z,79) = Te fzo H(&)dz , where T denotes the time-
ordering operator, and z; is the initial time. Without loss
of generality, we set zop =0 and U(z,z9) = U(z) to
simplify notations. The Floquet operator is defined as
the time evolution operator for one full period, given by
U(A) [50], from which a time-averaged effective
Hamiltonian can be defined as Hy = (i/A)In U(A) [50].
The eigenvalues of H.; correspond to the quasienergy
spectrum of the system. Because of the translation sym-
metry, both U(z) and Hyp can be Bloch decomposed as
U,=1]U(z,k) and Hp=> Hp(k), respectively.
According to Ref. [35], a Z-valued invariant can be defined
for the quasienergy gap at zero or z for a 1D periodically
driven system with chiral symmetry, as also satisfied for our
model. To calculate this invariant, we resort to the periodized
evolution operator, given by V(z, k) = U(z, k)e™r()z It is
found that regardless of the value of w, no gap appears
around quasienergy zero in our model, so we only need to
calculate the z gap invariant G, through [35]

Go = (Wi OV ()

where V; is obtained from V(z, k) at half period:

V(A/2.k) = <VO+ 0 ) (3)

Vz

The numerical result of G, as a function of @ is presented in
Fig. 3(b), where the bandwidth of the undriven system
A = 4k, is taken as the energy scale. When w/A > 1,
G,=0,butwhen 1/3 <w/A<1,G,=1(G,atw/A <
1/3 is not presented here, since the complex low-frequency
behavior may result in unpleasant noninteger values of the
topological invariant [10]). A nonzero G, indicates a
topologically nontrivial phase and through bulk-edge
correspondence, it corresponds to the number of edge #
modes within the 7 gap [35], as confirmed by the open-
boundary quasienergy spectrum in Fig. 3(a), where the
waveguide number is N = 80, and 7 modes appear within
therange 1/3 < w/A < 1. It should be emphasized that the
experimental range of @ = 0.0314-0.0785 mm~!, where
anomalous edge modes are observed, approximately
falls into this topologically nontrivial region of A/3 ~ A
(0.056-0.168 mm™'), thus permitting us to reasonably
identify them as the z modes predicted in the periodically
driven SSH model.

In fact, the underlying physics becomes much clearer in
the direct-product Floquet space: H ® 7 [34,36], where H
is the usual Hilbert space and 7 denotes the space of time-
periodic functions spanned by ¢, with the integer index
n representing the nth Floquet replica [34]. Considering the
periodic nature of the energy, we only need to focus on the
energy range (—x, x| (or (—(w/2),(w/2)]) of the n =0
replica. When w > A, the n = 0 replica is decoupled from
other replicas with a gap between the n = 1 replicaate =«
(—=z is equivalent to ), which should be topologically
trivial since this gap persists when @ approaches the trivial
high-frequency limit. At @ = A, as shown in Fig. 3(d) (first
column), this gap is closed due to the band touching of the
n =0 and 1 replicas at € = z. With further decreasing w,
the coupling between n = 1 and 0O replicas opens this gap
again, as shown in Fig. 3(d) (middle column) with
@ = A/2. This gap will close again at @ = A/3, where
the n = 2 and —1 replicas touch at € = x [last column in
Fig. 3(d)]. It has been shown in Ref. [34] that this gap
closing-reopening process switches the z gap from trivial to
nontrivial through the calculation of the Zak phase [34].
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FIG. 3.

(a) Quasienergies under open-boundary conditions (OBCs) with 80 waveguides and (b) G, as a function of the driving

frequency w, where the bandwidth A is taken as the energy unit. Floquet 7 modes can be found in the quasienergy spectrum when
1/3 <w/A <1 with G, = 1. When choosing five frequency replicas n = 0, £1, £2. (d) The momentum space quasienergy band
structures (blue solid lines) of the five chosen frequency replicas with w/A = 1 (first column), /A = 1/2 (middle column), and
w/A = 1/3 (last column). Red dashed lines correspond to the case with no dimerization (5x = 0) and uncoupled Floquet replicas, which
are used to guide the eye for each Floquet replica. (c) Quasienergies under OBCs with 40 waveguides as a function of w/A. (e) (Bottom
row) The dynamic evolution of the z-mode end states for 40 waveguides and w = 3w; (n, = 3), where a ten-waveguide configuration
and corresponding CST simulation results are presented in the upper row for reference.

Consequently, the same nontrivial region of A/3 < w < A
is obtained as above from G,. When w is smaller than A/3,
many more Floquet replicas are involved [34], which is
beyond the scope of this Letter. Note that the zero
quasienergy gap is always closed regardless of w, thus
eliminating the possibility of the emergence of in-gap zero
quasienergy modes. To further support the above argument,
we choose N = 40 waveguides and n = 0, =1, £2 replicas
to numerically plot the open-boundary spectrum as a
function of w/A in Fig. 3(c) and the time-dependant
evolution of the z edge modes with @ =3w; in
Fig. 3(e) (bottom row). It is obvious that these modes
propagate along the array’s boundaries and exhibit periodic
oscillation in the intensity distribution, which matches well
with the CST simulation results presented in Fig. 3(e).
Discussion.—We first discuss the gauge dependence of
the initial phase 6y(zy) (i.e., Floquet gauge). The Floquet
gauge can be tuned by simply adjusting the initial input
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FIG. 4. Near-field measurements of amplitude profiles for 10
waveguides of length L = 400 mm, initial phase 6, = z, and
(@) np =3 and (b) n, = 20.

position in our structural design. Although the quasienergy
and the 7 mode are theoretically gauge independent,
to excite and observe the dynamical # mode, it is found
experimentally that 6, must be tuned to the region
(-7/2,7/2); i.e., the instantaneous Hamiltonian at the
initial time z, must lie in the topological nontrivial phase.
This is illustrated by our experimental measurements in
Figs. 2(c) and 4(a) for §, = 0 and x, respectively, under the
same driving frequency @ = 3w, (results for other 6,
values are presented in Fig. S4 [62]). In contrast to
Fig. 2(c), the injected microwave in Fig. 4(a) no longer
propagates along the boundary, but gradually spreads into
the bulk array, thus indicating no excitation of the z-mode
state. In addition, for the high-frequency case in the
topologically trivial phase, the propagating pattern shows
no dependence of 8, as can be seen by comparing Fig. 2(a)
(6o = 0) and Fig. 4(b) (¢, = =), with the same @ = 20w, .
This is related to the universal high-frequency behavior of a
periodically driven system [3].

Next, we examine the topological robustness of the 7 mode
in the presence of weak disorder by introducing weak random
coupling coefficients between neighboring waveguides.
Through the CST simulation, we present the microwave
propagation patterns for @ = 3w, and 4w, , respectively, in
Figs. S6(a) and S6(b) [62]. It is obvious that the 7 mode still
propagates along the boundary with periodic-driven oscil-
lation and a negligible amount of dissipation into the bulk,
which indeed suggests its robustness to weak disorder.

Conclusion.—In summary, by periodically bending
ultrathin metallic arrays of coupled corrugated waveguides,
we have successfully realized a photonic simulation of the
1D periodically SSH model. Under certain driving proto-
cols and initial input positions, we experimentally observed
and theoretically verified the Floquet # mode in 1D
periodically driven systems. Because of the extremely high
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flexibility and tunability, our Floquet simulator can be
widely applied to investigate various driven phenomena in
time-dependent quantum systems, including the Thouless
pumping [58,63—66] and the possible nonadiabatic Floquet
pumping [67].
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