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In this Letter, we address the long-range interaction between kinks and antikinks, as well as kinks and
kinks, in φ2nþ4 field theories for n > 1. The kink-antikink interaction is generically attractive, while the
kink-kink interaction is generically repulsive. We find that the force of interaction decays with the
2n=ðn − 1Þth power of their separation, and we identify the general prefactor for arbitrary n. Importantly,
we test the resulting mathematical prediction with detailed numerical simulations of the dynamic field
equation, and obtain good agreement between theory and numerics for the cases of n ¼ 2 (φ8 model),
n ¼ 3 (φ10 model), and n ¼ 4 (φ12 model).
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Introduction.—The study of field-theoretic models with
polynomial potentials has been a topic of wide appeal
across a diverse span of theoretical physics areas, including
notably cosmology, condensed matter physics, and non-
linear dynamics [1–3]. Arguably, the most intensely studied
model in this class is the quartic (double well) potential, the
so-called φ4 model, connected to the phenomenological
Ginzburg-Landau theory [4,5], among numerous other
applications [6–9]. While the φ4 model has a time-honored
history in its own right [10], more recently, higher-order
field theories have emerged as models of phase transitions
[11] relevant to materials science [12–14] (see also
Ref. [10] (Chap. 11) and Ref. [15]), or in quantum
mechanical problems (including supersymmetric ones)
[16], among others. There, the prototypical example has
been the φ6 field-theoretic model, which has led to
numerous insights and novel possibilities with respect to
the spectral properties [17] and wave interactions [18].
Scattering of solitary waves (topological defects or

otherwise) is a long-standing topic of active research

[19], starting from the early works [7,8]. Our aim here
is to go beyond the “classical” models, in a direction that,
admittedly, has already seen some significant activity
[11,20–26]. One of the particularly appealing aspects of
this research program (aside from its potential above-
mentioned applications in materials science or high-energy
physics or quantum mechanics) is that higher-order field
theories possess topological defect solutions (kinks) with
power-law tails, rather than the “standard” exponential tails
that we are used to in the φ4 and the (usual variants of) φ6

field theories. The resulting dynamics set by the power-law
tails endows topological defects with long-range inter-
actions. Recently, a methodology for quantifying such
kink-kink and kink-antikink interactions in the φ8 model
was proposed in Ref. [27]. In our previous work [28], we
showed that there are some deep challenges in even
initializing such topological defect configurations numeri-
cally. Thus, the initial conditions in a direct numerical
simulation of interactions may substantially affect the
nature of the observed interactions (cf. also earlier works
including, e.g., Ref. [26]).
One of the related motivations of our study stems from

the expectation that power-law tails may affect the physical
properties of a system governed by higher-order field
theories. For instance, the dynamics and interaction of
domain walls in ferroelastic materials undergoing succes-
sive phase transitions [13] should affect the elastic
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properties in unusual ways. Similarly, the response of
crystals undergoing isostructural transitions [14] or the
behavior of crystallization of chiral proteins [29] should be
altered by the associated long-range interactions between
domain walls.
The present effort provides an answer to the question of

how kink-kink (K-K) and kink-antikink (K-AK) long-range
(power-law) interactions occur in higher-order field theo-
ries that exhibit such topological defects. We consider
particular (yet highly relevant to this problem) potentials
for which the highest power of φ in the potential is 2nþ 4,
and we analyze the interaction for arbitrary n ≥ 2. We find
that kinks repel each other, while kinks and antikinks
generically attract, in both cases with a power law decaying
as the ð2n=n − 1Þth power of their mutual separation.
Furthermore, we adapt the recent methodology of
Ref. [27] to the case of arbitrary n ≥ 2, and we identify
the prefactor (distinct for K-K and K-AK) of the corre-
sponding power-law interaction force. Equally important,
we resolve the “uncertainty” of the prefactor indicated in
Ref. [27]. We identify the most accurate asymptotic
prefactor and test it against direct numerical simulations
to find good agreement for φ8 (n ¼ 2), φ10 (n ¼ 3), and
φ12 (n ¼ 4) models, for both K-K and K-AK interactions.
The increasing trend of the deviations between the two, as n
increases, is also explained.
First, we present our theoretical results. Then, we

compare them to direct numerical simulations. Finally,
we offer some conclusions and directions for future work.
Theoretical analysis.—Consider a real scalar field φðx; tÞ

in (1þ 1) dimensional spacetime, its dynamics set by the
Lagrangian density

L ¼ 1

2

�∂φ
∂t

�
2

−
1

2

�∂φ
∂x

�
2

− VðφÞ: ð1Þ

The dynamic equation of motion of this field is

∂2φ

∂t2 ¼ ∂2φ

∂x2 −
dV
dφ

: ð2Þ

The potential V is, specifically, of the form

VðφÞ ¼ 1

2
ð1 − φ2Þ2φ2n: ð3Þ

This potential has three minima: φ̄1 ¼ −1, φ̄2 ¼ 0, and
φ̄3 ¼ 1. Hence, there are two kinks in this model, φð−1;0ÞðxÞ
and φð0;1ÞðxÞ, and two corresponding antikinks, φð0;−1ÞðxÞ
and φð1;0ÞðxÞ. All of these defects exhibit one power-law
and one exponential asymptotic decay to the respective
equilibria (0 and �1) as jxj → ∞. We study the interaction
force between the kink φð0;1ÞðxÞ and the kink φð−1;0ÞðxÞ.
Their time-dependent positions are x ¼ �AðtÞ, respec-
tively, and their long-range tails overlap. Similarly, for

the K-AK interaction, we employ the antikink φð0;−1ÞðxÞ
and the corresponding mirror kink φð−1;0ÞðxÞ located at
x ¼ �AðtÞ, respectively.
In Ref. [28], the interaction via power-law tail asymp-

totics was studied numerically for n ¼ 2 (φ8 model). In
Ref. [27], the force between a well-separated kink-kink and
kink-antikink was analyzed, again for n ¼ 2. Our aim here
is to generalize the (most sophisticated among the different)
approach(es) of the very recent work [27], and to calculate
the result for arbitrary n. Then, we blend this theoretical
analysis with the delicate computational approach from
Ref. [28] to fully flesh out the K-K and K-AK long-range
interactions in such higher-order field theoretic models
involving power-law tails.
Below, we model the accelerating kink solution of

Eq. (2) by a field of the form φðx; tÞ ¼ ϕðyÞ, where y ¼
x − AðtÞ and ϕ ¼ φð0;1Þ or φð0;−1Þ.
Kink-kink interaction.—Substituting the kink profile into

Eq. (2) yields the static equation for ϕ:

ϕ00 þ aϕ0 −
dV
dφ

����
φ¼ϕ

¼ 0; ð4Þ

where a ¼ Ä is the acceleration (assumed small) and
Lorentz contraction terms (∝ _A2) have been neglected.
Here, _A ¼ dA=dt, and ϕ0 ¼ dϕ=dy. Following Ref. [27],
the Bogomolny equation ϕ0 ¼ ðdW=dφÞjφ¼ϕ, where
V ¼ ð1=2ÞðdW=dφÞ2, is used to eliminate ϕ0 from
Eq. (4). Treating a as slowly varying, we define an effective
potential ṼðϕÞ ≈ VðϕÞ − aWðϕÞ. Then, from the first
integral of Eq. (4) (setting the constant of integration in
the limit of y → ∞), we obtain

�
dϕ
dy

�
2

¼2ṼðϕÞþ2aWð1Þ∼ϕ2nþ 4a
ðnþ1Þðnþ3Þ : ð5Þ

This calculation is asymptotic [dropping oðϕ2nÞ terms],
using the fact that our chosen family of potentials is such
that VðϕÞ ∼ 1

2
ϕ2n as ϕ → 0. Meanwhile, the second term in

Eq. (5) (from the contribution of Wð1Þ −Wð0Þ, independ-
ently of the normalization of W) is effectively proportional
to the kink’s rest mass M ¼ 2=½ðnþ 1Þðnþ 3Þ� (for arbi-
trary n). Requesting (as in Ref. [27]) that ϕðyÞ should have
the properties that ϕð−AÞ ¼ 0 while ϕð0Þ diverges, we can
rearrange Eq. (5) into a quadrature:

Z
∞

0

dϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2n þ 4a

ðnþ1Þðnþ3Þ
q ¼ A: ð6Þ

The change of variables ϕ ¼ ð4a=½ðnþ 1Þðnþ 3Þ�Þ1=2nλ in
Eq. (6) yields
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�
4a

ðnþ 1Þðnþ 3Þ
�ð1−nÞ=2n Z ∞

0

dλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2n þ 1

p ¼ A: ð7Þ

The relevant integral can be computed as

Z
∞

0

dλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2n þ 1

p ¼ Γðn−1
2n ÞΓð 1

2nÞ
2n

ffiffiffi
π

p ; ð8Þ

yielding the acceleration during the K-K interaction:

a ¼
�
Γðn−1

2n ÞΓð 1
2nÞ

2n
ffiffiffi
π

p
�
2n=ðn−1Þ ðnþ 1Þðnþ 3Þ

4
A2n=ð1−nÞ: ð9Þ

For the φ8 model, n ¼ 2, and Eq. (9) yields
a ¼ 44.3139=A4. From Newton’s second law (F ¼ Ma),
the force is F ¼ 2

15
a ¼ 5.9085=A4. Similarly, for the φ10

model, n ¼ 3, and we get a ¼ 16.5411=A3 and F ¼ 1
12
a ¼

1.3784=A3. Finally, for the φ12 model, n ¼ 4, and we get
a ¼ 16.1871=A8=3 and F ¼ 2

35
a ¼ 0.9250=A8=3.

Kink-antikink interaction.—The calculation in the K-AK
case proceeds in the same way with the main difference that
now a ¼ −Ä due to the attraction, in this case, between
kink and antikink. From the corresponding version of
Eq. (6), we have

Z
∞

½ 4a
ðnþ1Þðnþ3Þ�1=2n

dϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2n − 4a

ðnþ1Þðnþ3Þ
q ¼ A: ð10Þ

Notice that, now, the integral must be from the turning point
rather than from 0, related to the sign change of the
Bogomolny equation satisfied by the antikink.
Using the same change of variables as above, Eq. (10)

becomes
�

4a
ðnþ 1Þðnþ 3Þ

�ð1−nÞ=2n Z ∞

1

dλffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2n − 1

p ¼ A: ð11Þ

Once again, the integral can be calculated:

Z
∞

1

dλffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2n − 1

p ¼ −
ffiffiffi
π

p
Γðn−1

2n Þ
Γð− 1

2nÞ
; ð12Þ

yielding the acceleration during the K-AK interaction:

a ¼
�
−

ffiffiffi
π

p
Γðn−1

2n Þ
Γð− 1

2nÞ
�
2n=ðn−1Þ ðnþ 1Þðnþ 3Þ

4
A2n=ð1−nÞ: ð13Þ

An intriguing observation stems from the ratio of
Eqs. (13) and (9). In particular, using the well-known
identities aΓðaÞ ¼ Γðaþ 1Þ, and ΓðaÞΓð1 − aÞ ¼ π=
sinðπaÞ, we can express the ratio of the K-AK to K-K
forces as

R ¼ FK-AK

FK-K
¼ −

�
sin

�
π

2n

��
2n=ðn−1Þ

: ð14Þ

This expression suggests that, contrary to what is known
about “standard” models such as sine-Gordon or φ4 and
their exponentially decaying kinks and antikinks [2,3,10],
here the ratio of the K-AK to K-K force is not equal (in
absolute value) to 1, but rather decreases with n. Therefore,
a fundamental characteristic of long-range-interacting
kinks is that this feature becomes more dramatic (with
the ratio, in principle, tending to 0 as n → ∞), as the tails
become “heavier”.
For n ¼ 2 (φ8 model), from Eq. (13), we get a ¼

11.0785=A4 and F ¼ − 2
15
a ¼ −1.4771=A4. Similarly,

for n ¼ 3 (φ10 model), we get a ¼ 2.0676=A3 and
F ¼ − 1

12
a ¼ −0.1723=A3. Finally, for n ¼ 4 (φ12 model),

we get a ¼ 1.2495=A8=3 and F ¼ − 2
35
a ¼ −0.0714=A8=3.

Armed with these specific predictions for K-K and K-AK
interactions, we turn to verification of our general theory
via direct numerical simulations.
Numerical results.—Here, we deploy our recent meth-

odology [28], which is critical to obtaining accurate
simulations of the interactions between topological defects
with power-law tails (long-range interactions). Briefly, a
pseudospectral differentiation matrix with periodic boun-
dary conditions [30] replaces the spatial derivatives in
Eq. (2) on the interval x ∈ ½−200; 200� with N ¼ 2000
discrete points (hence, the grid spacing is Δx ¼ 0.2). The
resulting system of ordinary differential equation (after
discretizing in x) is integrated numerically using MATLAB’s
ODE45 solver with built-in error control.
FollowingRef. [28], for theK-AK interactionswe startwith

a “split-domain” ansatz φsplitðxÞ ¼ ½1 −HðxÞ�φð−1;0ÞðxÞþ
HðxÞφð0;−1ÞðxÞ, where HðxÞ is the Heaviside unit step
function. That is, φsplitðxÞ ¼ φð−1;0ÞðxÞ on the interval
ð−∞; 0�, while φsplitðxÞ ¼ φð0;−1ÞðxÞ on the interval
ð0;∞Þ. Then, φsplitðxÞ is used as the initializer for the
MATLAB function LSQNONLIN, which minimizes (using non-
linear least squares) the l2 norm of the discretized version of
the opposite of the right-hand side ofEq. (2), subject to the two
additional constraints of keeping the positions of the kink and
antikink fixed. The result is a smoothed andminimizedversion
of φsplitðxÞ, which is then used as the initial condition for
solving the partial differential equation (PDE) Eq. (2)
numerically.
The K-K case is similar, except that φsplitðxÞ ¼ ½1−

HðxÞ�φð−1;0ÞðxÞ þHðxÞφð0;1ÞðxÞ. As a result, there is a
discontinuity at x ¼ 0, which becomes large for φ10 and
even larger for φ12. With N ¼ 2000, LSQNONLIN fails to
converge for some cases; however, for smaller N it does
converge. Thus, the output from smaller N can be used as
the initializer for LSQNONLIN with N ¼ 2000, which then
converges quickly. Except for this detail, the procedure is
the same as for the K-AK case. As explained in Ref. [28],
this type of minimization procedure is crucial in order to
avoid inaccurate interaction observations stemming from a
more naive sum or product (of kinks) ansatz.

PHYSICAL REVIEW LETTERS 122, 171601 (2019)

171601-3



In Figs. 1–3, the top-right panel shows the K-K and
K-AK configuration initializers used to evolve the PDE,
i.e., Eq. (2), under the φ8, φ10, and φ12 models, respec-
tively. The bottom-left and bottom-right panels of each
figure show, respectively, the space-time evolution of the
field for the K-AK case (attraction) and K-K case (repul-
sion). Cyan curves with circle symbols are solutions to the
Newtonian equation of motion Ma ¼ F, where F was
obtained above in the form F ¼ MγiðnÞA2n=ð1−nÞ with γiðnÞ
as the corresponding prefactor (i ¼ K-K or K-AK). Since
a ¼ Ä for K-K and a ¼ −Ä for K-AK, then both cases
require solving the initial value problem (IVP) for the kink
location x ¼ A: ẍ ¼ �γiðnÞx2n=ð1−nÞ, _xð0Þ ¼ 0, and
xð0Þ given.
Note that in all three figures, especially in Figs. 2 and 3,

the bottom-left plots show that the attractive force between
the kink and antikink leads them to collide at x ¼ 0 at some
instant of time, upon which “bounces” are observed. Our
theory of the interaction force is asymptotic for large
separation; therefore it does not in any way address the
instant of collision and beyond. Therefore, the cyan curves
(with circle symbols) are not expected to agree with the
contours of the numerical solution as the kink and antikink
locations approach the origin (x ¼ 0).
Next, we numerically calculate the relation between the

location of the kink (i.e., half-separation) A and its

acceleration a (from rest) by solving the PDE in Eq. (2)
over a very short time interval (from t ¼ 0 to t ¼ 0.01). A is
then calculated as a function of t over this interval, which is
used to estimate the acceleration a ¼ Ä, which is nearly
constant during this time interval. Then, a least-squares
model of the form a ¼ b=Ak was fit to the simulation data.
The numerically fit results are shown graphically in log-log
plots in the upper-left panels of Figs. 1–3. Therein, the
numerically fit models are also compared to the results
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FIG. 1. Top left is the log-log plot of the left kink acceleration a
as a function of A for the kink-kink interaction (blue) and kink-
antikink interaction (red) in the φ8 model. The dashed lines are
computed numerically, and the solid lines are computed analyti-
cally. Top right is the plot of the initializers for the kink-kink
(K-K) (blue-solid) and kink-antikink (K-AK) (red-dashed) inter-
action. Bottom left is the space-time contour plot of the K-AK
interaction, and the cyan curve with circle symbols is the plot of
the solution to the initial value problem (IVP): ẍðtÞ ¼
−11.0785=x4, xð0Þ ¼ 20, _xð0Þ ¼ 0. Bottom right is the space-
time contour plot of the K-K interaction, and the cyan curve with
circle symbols is the solution to the IVP: ẍðtÞ ¼ 44.3139=x4,
xð0Þ ¼ 20, _xð0Þ ¼ 0.
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FIG. 2. Equivalent of Fig. 1 for the φ10 model. Bottom left is the
space-time contour plot of the K-AK interaction, and the cyan
curve with circle symbols is the solution to the IVP:
ẍðtÞ ¼ −2.0676=x3, xð0Þ ¼ 20, _xð0Þ ¼ 0. Bottom right is the
space-time contour plot of the K-K interaction, and the cyan
curve with circle symbols is the solution to the IVP:
ẍðtÞ ¼ 16.5411=x3, xð0Þ ¼ 20, _xð0Þ ¼ 0.
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FIG. 3. Equivalent of Figs. 1 and 2 for the φ12 model. Bottom
left is the space-time plot of the K-AK interaction, and the cyan
curve with circle symbols is the solution to the IVP:
ẍðtÞ ¼ −1.2495=x8=3, xð0Þ ¼ 20, _xð0Þ ¼ 0. Bottom right is the
space-time contour plot of the K-K interaction, and the cyan
curve with circle symbols is the solution to the IVP:
ẍðtÞ ¼ 16.1871=x8=3, xð0Þ ¼ 20, _xð0Þ ¼ 0.
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from the theoretical analysis above. The fit between the
asymptotic prediction and the numerical results is good in
all the cases considered, and nearly perfect for the φ8

model. The kink location predicted by solving the appro-
priate IVP is superimposed onto the contour plots in the
bottom panels of Figs. 1–3.
In Tables I and II we summarize our findings, both

theoretical and numerical. In calculating the error between
the theoretical and numerical models we find that, for
smaller values of A, the error between the models is greater
(especially as n becomes larger). The reason for this
discrepancy is twofold: (i) the theoretical model derived
above is valid only asymptotically for large separations,
and (ii) for large n, the domain walls exhibit “fatter” tails;
thus it becomes increasingly difficult to prepare a “well-
separated” initial condition. Therefore, we restrict our-
selves to A ≥ 50 when calculating the fit to the numerical
simulation data and when comparing it against the theo-
retical prediction.
For the K-AK interaction, we used six A values (data

points) in the interval [50, 300], while for the K-K
interaction we used six A values in the interval [50,
150]. For the K-K case it is difficult to find accurate initial
conditions for the PDE for A > 150 (because MATLAB’s
LSQNONLIN takes longer, or fails, to converge to an
appropriate field configuration to be used as an initial
condition). The relative error between the theoretical model
and the numerical fit is calculated over the same range as
the range of data points used to obtain the numerical
models. In all cases, the maximum error occurs at the first
data value (A ¼ 50). A more computationally intensive
investigation of the suitable distance regime in which the
asymptotic theoretical predictions are valid may signifi-
cantly reduce the error in Tables I and II for larger n. Thus,

on the basis of the currently available results, we conclude
that further investigation would be required to determine
such a range.
Conclusions and future work.—In the present work, we

have taken a significant step beyond the standard field-
theoretic models for topological defects and their inter-
actions, which have been studied for a number of decades.
Up to now, the vast majority of the associated one-
dimensional efforts have focused on kinks with exponential
tail decay, thus endowing the coherent structures with a
“short-range” exponential tail-tail interaction. Using poten-
tials with the highest power going as φ2nþ4, for arbitrary n,
as the vehicle of choice in this work, we have systemati-
cally examined the long-range pairwise kink-kink and
kink-antikink interactions. We have blended state-of-the-
art asymptotic tools with carefully crafted numerical
simulations to elucidate the power-law nature of the decay
of the interaction force with the 2n=ðn − 1Þth power of the
separation between the topological defects. Equally impor-
tant, we have identified the prefactor of this interaction (for
arbitrary n) and have confirmed its agreement with numeri-
cal simulations for n ¼ 2, n ¼ 3, and n ¼ 4.
Our results will likely provide valuable insights into

domain wall interaction in materials [13,14] and biophysi-
cal [29] contexts that are governed by higher-order field
theories. We also hope that this study will pave the way for
the formulation of novel collective coordinate treatments
[31] of long-range interactions, and a systematic under-
standing of their outcomes (including the role of initial
kinetic energy; here, to crystallize the relevant phenom-
enology we restricted ourselves to kinks initially at rest).
Another direction of future work concerns the exploration
of coherent structures in higher dimensions [32] and the
understanding of the existence, stability, and dynamics of
localized and vortical patterns therein. Finally, the meth-
odology developed herein can be applied to kink inter-
actions in other recently proposed higher-order field
theories harboring power-law tails [11,25,33].
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