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We address the question of quantum memory storage for quantum dynamics. In particular, we design an
optimal protocol for N → 1 probabilistic storage and retrieval of unitary channels on d-dimensional
quantum systems. If we access the unknown unitary gate only N times, the optimal success probability of
perfect single-use retrieval is N=ðN − 1þ d2Þ. The derived size of the memory system exponentially
improves the known upper bound on the size of the program register needed for probabilistic
programmable quantum processors. Our results are closely related to probabilistic perfect alignment of
reference frames and probabilistic port-based teleportation.

DOI: 10.1103/PhysRevLett.122.170502

Introduction.—Since the discovery of the first quantum
algorithms [1,2] and protocols [3,4], information process-
ing with quantum systems has challenged basic paradigms
and existing limitations of computer science. In the last few
decades we have discovered that quantum information
cannot be cloned [5], its “logical value” cannot be inverted
[6], quantum processors cannot be universally programmed
[7], and universal multimeters do not exist [8,9]. No doubt,
any of these programmable devices would represent a very
useful piece of quantum technology; thus, their approxi-
mate realizations are of foundational interest [8–15]. The
no-go restrictions imposed by quantum theory are treated in
two ways. Either we ask for an approximate performance or
we allow that the perfect performance happens with some
probability of failure.
Studies of optimal approximate cloners initiated by

Bužek and Hillery [10] demonstrated that such nonideal
devices are of practical relevance, and this motivated the
study of other universal devices. In particular, it was shown
that quantum theory limits the fidelity of 1 → N clones of
qubits to ð2N þ 1Þ=3N [16]. For quantum processors
Nielsen and Chuang [7] proved that perfect (error-free)
implementation of k distinct unitary transformations
requires at least a k-dimensional program register.
Recently, cloning was also considered for quantum trans-
formations [17,18]. This unveiled an unexpected feature
called superreplication [19,20]. In this protocol, starting
with N copies of a qubit unitary transformation U, one
deterministically generates up to N2 copies of U with an
exponentially small error rate. While studying the cloning
of unitaries, it was realized that there is a closely related
task of storage and retrieval (SAR), which differs only in
the causal order of available resources. While in the cloning
case the cloned device is available after the input states are
at their disposal, one can consider also a task where this

order is reversed; thus, the device is available only before
the input states. In such a case, we need to learn [21] and
somehow store the action of the device and retrieve it once
the input states are available.
Problem formulation.—The devices transforming states

of a d-dimensional quantum system associated with a
Hilbert space H are formalized as quantum channels,
i.e., completely positive trace-preserving linear maps on
the space LðHÞ of linear operators on H. Suppose that an
unknown channel U is provided for experiments and that
we may access it N times. However, we are asked to apply
U on an unknown state ξ only after we have lost access to
this channel. Therefore, our aim is to find an optimal
strategy that stores U in a state of a quantum memory
(associated with Hilbert space HM) and allows us to
retrieve its action when needed. In the approximative
setting, this task (for unitary channels) was studied
in Ref. [22].
Our goal is to investigate the probabilistic version of the

SAR problem; in particular, we aim to find the optimal
N → 1 probabilistic storage and retrieval procedure
(PSAR). Moreover, we require the retrieved channel to
be implemented perfectly and with the same probability of
success (“covariance” property) for all considered chan-
nels. We will design the strategy maximizing the proba-
bility for the set of unitary channels, i.e., UðξÞ ¼ UξU† for
some unitary operator U. Owing to the no-programming
theorem [7], the retrieving part of any PSAR strategy
cannot be deterministic. Thus, the successful retrieval is
described by a trace-nonincreasing completely positive
linear map (quantum operation) T U∶LðHÞ → LðHÞ pro-
portional to the unknown unitary channel, T U ¼ λUU.
Consequently, the success probability is λU ¼ tr½T UðξÞ�,
and the condition of covariance implies that λU ¼ λ for
all U.
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One-to-one probabilistic storage and retrieval.—In such
a case the unknown unitary U is applied on a suitably
chosen state jψi (in general bipartite and entangled), which
yields state jψUi ∈ HM and concludes the storing phase.
Afterwards, once we want to apply unitary U on some
state ξ, we employ a retrieving quantum instrument
R ¼ fRs;Rfg, which acts on ξ ⊗ jψUihψUj and, in the
case of success, outputs an subnormalized state λUξU†,
i.e., Rs∶LðHin ⊗ HMÞ → LðHoutÞ with H ¼ Hin ¼ Hout.
The retrieving quantum instrument plays the role of a
probabilistic programmable processor and the state jψUi
programs a unitary transformation U to be performed on a
state ξ.
Using the Choi isomorphism [23] and requiring

perfect retrieval, we have Rsðξ⊗ jψUihψUjÞ ¼
trin;M½ðI⊗ ξT ⊗ jψUihψUjTÞRs� ¼ λtrin½ðI⊗ ξTÞjU⟫⟪Uj� ¼
λUξU†, where Rs ∈ LðHout ⊗ Hin ⊗ HMÞ and jUii ¼ffiffiffi
d

p ðU ⊗ IÞjψþi with jψþi ¼ d−1=2
P

jjji ⊗ jji (vectors
fjjig form an orthonormal basis of H ¼ Hin ¼ Hout).
Since the above identity must hold for any ξ and
jψUihψUjT ¼ jψ�

Uihψ�
Uj (both the transposition and the

conjugation are defined with respect to the same basis of
HM), we obtain the following perfect retrieval condition

hψ�
UjRsjψ�

Ui ¼ λjU⟫⟪Uj ∀ U ∈ SUðdÞ: ð1Þ

Already this simple case shows that the maximization of
probability of success λ involves the simultaneous opti-
mization of the storing phase (choice of jψi) and the
retrieving phase (choice of quantum instrumentR). It turns
out that the optimal performance is achieved by the
(incomplete) quantum teleportation protocol [4] that is
a known example of a universal probabilistic quantum
processor [24]. Let us note that this is similar to quantum
gate teleportation invented by Gottesman and Chuang [25],
yet it is different because PSAR must work perfectly for
any unitary transformation. In particular, the optimal state
for storage is jψi ¼ jψþi (see Fig. 1). Then the optimal
retrieval is achieved by a quantum teleportation of state ξ
using the stored state jψUi ¼ d−1=2jU⟫. The generalized
Bell measurement performed on ξ and one part of jψUi
results in an outcome kwith probability 1=d2. In such a case
we are left with the second part of jψUi in the state

UσkξσkU†, where σk are generalized Pauli operators. In
case of σk ¼ I (associated with the Bell measurement
projection onto jψþi) the stored unitary channel is success-
fully retrieved. For all of the other outcomes, the unwanted
σk rotation cannot be undone because the unitary U is
unknown. In conclusion, the teleportation-based PSAR
succeeds with probability 1=d2. Its optimality follows from
our subsequent discussion of the optimal N → 1 PSAR.
N-to-one probabilistic storage and retrieval.—The gen-

eral PSAR strategy with N uses of a channel in the storing
phase involves all combinations of their parallel, succes-
sive, and adaptive processing and corresponds to a quantum
circuit with open slots, where the N uses of a channel can
be inserted. Such a framework is described within the
theory of quantum networks [26–29] and any quantum
circuit with open slots is represented by a positive operator
(see the Supplemental Material [30] for a short introduc-
tion). The storing network S acceptsN channels as its input,
and it outputs a memory state jψUi ∈ HM [see Fig. 2(a)].
As in the 1 → 1 case, the retrieving phase is described by a
two-valued instrumentR ¼ fRs;Rfg. The overall action of
PSAR is a composition of S and R determining a gener-
alized quantum instrument L ¼ fLs;Lfg. In the Choi
picture the input of PSAR corresponds to jU⟫⟪Uj⊗N ∈
LðHA ⊗ HBÞ and Ls ∈ LðHA ⊗ HB ⊗ Hout ⊗ HinÞ,
where HA ¼ HB ¼ H⊗N . The perfect retrieval condition
[as in Eq. (1)] is

⟪U�j⊗NLsjU�⟫⊗N ¼ λjU⟫⟪Uj ∀ U ∈ SUðdÞ; ð2Þ

where λ gives the success probability. Let us stress that the
probability of success, i.e., thevalue of λ, is required to be the
same for allU ∈ SUðdÞ. Thanks to this assumption, we can
without loss of generality apply the methods of Ref. [22] to

FIG. 1. Optimal 1 → 1 PSAR of unitary channels.

(a)

(b)

FIG. 2. Illustration of N → 1 PSAR. (a) PSAR with the most
general strategy. (b) PSAR with parallel use of unitary channels.
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conclude that the optimal storing phase is parallel, as
illustrated in Fig. 2(b). Consider the decomposition U⊗N ¼
⨁j∈irrepðU⊗NÞUj ⊗ Imj

into irreducible representations
(irreps), where Uj is a unitary operator on Hj, and Imj

denotes the identity operator on the multiplicity space.
This corresponds to the following decomposition of the
Hilbert space HA ≔ ⨁j∈irrepðU⊗NÞHj ⊗ Hmj

, and we set
dj ¼ dimðHjÞ. The result of Ref. [22] implies that the
memory state jψi can be taken to be of the following form:

jψi ≔ ⨁
j

ffiffiffiffiffi
pj

dj

r
jIj⟫ ∈ HM; pj ≥ 0;

X
j

pj ¼ 1; ð3Þ

where Ij denotes the identity operator on Hj, and
HM ≔ ⨁j∈irrepðU⊗NÞHj ⊗ Hj ⊆ HA ⊗ HA0 . The state jψi
undergoes the action of the unitary channels and becomes
jψUi ≔ ⨁j

ffiffiffiffiffiffiffiffiffiffiffiffi
pj=dj

p jUj⟫. Clearly, jψUi ∈ HM for any U.
Let us now focus on the retrieving quantum instrument

R from LðHin ⊗ HMÞ to LðHoutÞ, where subscripts in and
out refer to the system on which the retrieved channel is
applied. The perfect retrieval condition is again given by
Eq. (1) with jψ�

Ui ¼ ⨁j

ffiffiffiffiffiffiffiffiffiffiffiffi
pj=dj

p jU�
j⟫. As a consequence

of Eq. (2), the optimal Choi operator Rs can be chosen to
satisfy the commutation relation

½Rs; U0�V 0 ⊗ Uin ⊗ V�
out� ¼ 0; ð4Þ

where U0 ≔ ⨁jUj ⊗ Ij, V 0 ≔ ⨁jIj ⊗ Vj. Thanks to
Eq. (4), U0jψi ¼ jψUi and jψ�

I i ¼ jψi, so the perfect
retrieval condition becomes

hψ jRsjψi ¼ λjI⟫⟪Ij; ð5Þ

where λ ¼ ð1=d2Þ⟪Ijhψ jRsjψijI⟫ is the success probabil-
ity. Let us now consider the decomposition

U�
j ⊗ U ¼ ⨁

J∈irrepðU�
j⊗UÞ

UJ ⊗ I
mðjÞ

J
; ð6Þ

which induces the Hilbert space decomposition
Hj ⊗ H ¼ ⨁J∈irrepðU�

j⊗UÞHJ ⊗ H
mðjÞ

J
. Let us denote by

jJK the set of values of j such that UJ ⊗ VK is in the
decomposition of U�

j ⊗ Vj ⊗ U ⊗ V�. Using Eqs. (4) and

(6), we can assume [30] that Rs ¼ ⨁JIJ ⊗ IJ ⊗ sðJÞ,
where sðJÞ ≔

P
j;j0∈jJJ s

ðJÞ
jj0 jImðjÞ

J
⟫⟪I

mðj0Þ
J

j. Given this, the

left-hand side of Eq. (5) reads

hψ jRsjψi ¼
X
J

λJjI⟫⟪Ij þ νJ

�
I −

1

d
jI⟫⟪Ij

�
; ð7Þ

where νJ are specified in the Supplemental Material [30],
λJ¼ðdJ=d2ÞhϕJjsðJÞjϕJi, and jϕJi¼⨁j∈jJJ

ffiffiffiffiffiffiffiffiffiffiffiffi
pj=dj

p jI
mðjÞ

J
⟫.

Since Rs ≥ 0, the perfect learning condition of Eq. (5)
holds only if νJ ¼ 0 for all J, in which case the success
probability is λ ¼ P

JλJ. The following result translates the
optimization of λ from an operator optimization problem
into a linear program.
Theorem 1.—For optimal PSAR the success probability

λ is given by the following linear programming problem:

maximize
μJ;pj

λ ¼
X
J∈C

d3JμJ;

subject to 0 ≤ dJμJ ≤
pj

d2j
∀ j ∈ jJJ ∀ J ∈ C

pj ≥ 0
X

j∈irrepðU⊗NÞ
pj ¼ 1; ð8Þ

where C ¼ fJ ∈ irrepðU⊗N ⊗ U�ÞjddJ ¼
P

j∈jJJdjg.
Proof.—We will sketch only the key steps. The complete

proof is in the Supplemental Material [30]. First, one shows
that J ∉ C implies that sðJÞ ¼ 0. Then (for any J ∈ C),

νJ ¼ 0 and sðJÞ ≥ 0 imply that ffiffiffiffiffiffiffiffiffiffiffipjpj0
p sðJÞjj0 ¼ μJ

ffiffiffiffiffiffiffiffiffiffi
d3jd

3
j0

q
for

some μJ ≥ 0. Thus, λ ¼ P
J∈C

P
j;j0∈jJJðdJμJ=d2Þdjdj0 ¼P

J∈Cd
3
JμJ. The constraint that Rs is a quantum

operation gives trout½Rs� ≤ I. Equation (4) implies
that ½trout½Rs�; U0V 0 ⊗ U�

in� ¼ 0 and trout½Rs� ¼
⨁J⨁j∈jJJ IJ ⊗ IjðdJ=djÞsðJÞjj . Thus, dJμJðd2j=pjÞ ≤ 1

must hold for all J and j ∈ jJJ. Conditions on pj are from
Eq. (3). □

Case study: N → 1 PSAR for qubit channels.—In the
qubit (d ¼ 2) case the decomposition of U⊗N into
irreducible representations (irreps) of SUð2Þ reads U⊗N ¼
⨁N=2

j¼ðN mod 2Þ=2Uj ⊗ Imj
, where mj ¼ ½ð2jþ 1Þ=ðN=2þ

jþ 1Þ�ð N
N=2þjÞ [34] and Uj are the irreps of spin j with

dimension dj ¼ 2jþ 1. For convenience we work with
even N (for odd N see the Supplemental Material [30]), so
j ¼ 0; 1;…; N=2. For SUð2Þ the complex conjugate rep-
resentation U�

j is equivalent to irrep Uj. Thus, in Eq. (6)
we get either J ¼ jþ 1=2 or J ¼ j − 1=2. Altogether, J
can have values J ∈ C ¼ f1=2;…; ðN − 1Þ=2g or J ¼
ðN þ 1Þ=2 ∉ C because

P
j∈jJJdj ¼ dJ−1=2 þ dJþ1=2 ¼

ddJ and dN=2 ≠ 2dðNþ1Þ=2. The constraints in Eq. (8) imply
for any j but j ¼ 0; N=2 the following two inequalities:

μjþ1=2d2jdjþ1=2 ≤ pj; ð9Þ

μj−1=2d2jdj−1=2 ≤ pj: ð10Þ

For j¼0;N=2 only one of them exists. Let us define fj∈½0;1�
for j¼0;…;N=2 as fj¼ð1=2Þ½2j=ð2jþ1Þ�½ð2jþ2Þ=Nþ1�.
Since f0 ¼ 0 and fN=2 ¼ 1, we can multiply Eq. (9)
by 1 − fj and Eq. (10) by fj and take the sum for all j.
A straightforward calculation gives the upper bound:
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N þ 3

N

XðN−1Þ=2

J¼1
2

d3JμJ ≤ 1 ⇔ λ ≤
N

N þ 3
: ð11Þ

Finally, by choosing pj ¼ ð2jþ 1Þ2=L, μjþ1=2 ¼
1=ðLð2jþ 2ÞÞ (where L ¼ ðN þ 1ÞðN þ 2ÞðN þ 3Þ=6),
one proves that conditions in Eq. (8) are satisfied and the
upper bound (11) is achieved. The knowledge of μJ and
pj completely specifies the state jψi and the retrieving
operation Rs, which can be explicitly expressed [see
Fig. 2(b)]. Let jj; jzi ∈ Hj with jz ∈ f−j;…; jg be
an orthonormal basis of the spin j irrep. By definition
jIj⟫¼

Pj
jz¼−j jj;jzi⊗ jj;jzi. Consequently, from Eq. (3),

the dimension of the quantum memory is dimHM ¼PN=2
j¼0 d

2
j ¼ L, and the optimal input state for storage

is jψi ¼ ⨁N=2
j¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2jþ 1Þ=Lp jIj⟫.
Optimal PSAR for qudit unitary transformations.—The

optimization of N → 1 PSAR of qudit channels follows
similar steps as the qubit case, and it exploits a combina-
torial identity (Proposition 3 in Refs. [35,36]) which was
discovered and proved as a by-product of this analysis.
Theorem 2.—The optimal probability of success ofN→1

probabilistic storage and retrieval of a unitary channel
Uð:Þ ¼ U:U†, U ∈ SUðdÞ equals λ ¼ N=ðN − 1þ d2Þ.
The optimal state for storage is jψi ≔ ⨁j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðdj=LÞ
p jIj⟫

[see Eq. (3)], where L ≔
P

jd
2
j and j ∈ irrepðU⊗NÞ.

The proof is given in the Supplemental Material [30].
Clearly, asN goes to infinity, λ ∼ 1 − ðd2 − 1Þ=N, and λ ≈ 1

2

implies that N ≈ d2. Recalling that a d-dimensional unitary
transformation has d2 parameters, we see that roughly one
use per unknown parameter is needed for reliable storage
and retrieval of the transformation. Let us note that the
storage state in Theorem 2 is optimal also for the estimation
of a group transformation in the maximum likelihood
approach [37]. Further, it is worth stressing that the optimal
PSAR protocol is achieved by a coherent retrieval; hence,
the quantum memory is essential. By contrast, optimal
approximate SAR [22] is equivalent to quantum estimation
in the maximum fidelity approach, and classical memory is
sufficient as an output of the storing phase. Use of the
optimal storage state in the design of an approximate SAR
leads to fidelity that scales as 1 −OðN−1Þ; however, for the
optimal approximate SAR the fidelity scales as 1 −OðN−2Þ
[22]. ThisOðNÞ difference is the price to pay for the perfect
retrieval in the case of PSAR.
Alignment of reference frames (ARF) [38].—Let us note

that the correction of alignment errors can be modeled as a
PSAR protocol in which N uses of an unknown U are
stored and the aim is to retrieve the inverse transformation
U†. For SUð2Þ we can show that, given N uses of U, the
inverse transformation U−1 can be perfectly retrieved with
the same optimal probability of success λ (see Fig. 3 and
the Supplemental Material [30]). It follows that the success

probability of the probabilistic ARF protocol [38] achieves
the optimal scaling OðN−1Þ (see the Supplemental
Material [30]).
Probabilistic port-based teleportation (PPBT).—As the

first step of PPBT [39], Alice and Bob share N suitably
entangled pairs of quantum systems. Their goal is to
teleport an unknown state ξ to Bob in a way that this
state appears in one of his systems (called ports [40,41]). In
order to achieve this goal (see also Fig. 4), Alice performs a
specific measurement resulting in n ∈ f0; 1;…; Ng (0
labels the failure of the protocol) and communicates this
information to Bob who selects the system from the nth
port to accomplish the teleportation. If Bob applies a
channel U on each of his ports (storing phase) and Alice
starts the teleportation (retrieving phase) of ξ afterwards,
the nth port will output UðξÞ. Strictly speaking, we swap
the nth port into a fixed quantum system, and effectively we
achieve N → 1 PSAR. Let us stress that while any PPBT
protocol can be turned into a PSAR protocol, the converse
does not hold. In a sense, the PPBT scheme provides a
structurally simple realization of an optimal PSAR proto-
col. Our results show that the optimal probability of PPBT
[42] coincides with the optimal success probability of
PSAR. However, the memory dimension dimHM of the
optimal PSAR is exponentially smaller (see the following
paragraph) in comparison with 2N qudits used in PPBT
construction.
Implications for covariant probabilistic programmable

processors.—Up to now the best bound on the size of the
program register for universal covariant probabilistic
processors was provided by a family of PPBT processors
for which dimHM ≈ ðd2ðd2−1ÞÞ1=f, where f ¼ 1 − λ is the
failure probability. By contrast, the retrieving phase of
optimal N → 1 PSAR defines a class of processors for

FIG. 3. A modified optimal 1 → 1 PSAR in which U is stored
and the inverse transformation U† is retrieved [SUð2Þ case]. The
generalization to the N → 1 case is straightforward.

FIG. 4. Use of port-based teleportation scheme for PSAR.
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which the program register size reads dimHM ¼P
j∈irrepðU⊗NÞ d2j ¼ ðNþd2−1

N Þ, where we used Schur’s result
[43]. In terms of the failure probability, it reads
dimHM ∝ ð1=fÞðd2−1Þ, which is exponentially smaller
(for fixed d and f → 0) than provided by PPBT-based
processors. This result can be viewed as a quantification of
achievable trade-offs imposed by the no-programming
theorem [7] on universal covariant probabilistic processors.
Although PSAR provides only an upper bound on the
size of the program register, we conjecture that the lower
bound will have the same scaling. However, this question
remains open.
Summary.—We showed that optimal probabilistic stor-

age and retrieval of unknown unitary channels on d-
dimensional quantum systems can be designed with suc-
cess probability λ ¼ N=ðN − 1þ d2Þ, where N is the
number of uses of the channel in the storing phase. This
probability coincides with the success probability for
probabilistic port-based teleportation [42], and, for the
SUð2Þ case, with the probability of success for probabilistic
alignment of reference frames. Optimal PPBT can be
rephrased as an optimal protocol for PSAR, but for the
PSAR protocol designed here the storing memory system is
exponentially smaller and optimal in this parameter.
However, N → 1 PPBT-based PSAR implements all quan-
tum channels (not only unitary ones), and therefore its
performance is universal. The question of a potential
reduction of the memory system while keeping universality
for all channels remains open. A natural extension of this
Letter would be to consider storage and retrieval in the
presence of noise in the action of the stored unitary
channels. We performed a preliminary analysis of the noise
robustness of the optimal 2 → 1 PSAR protocol under the
influence of unbiased depolarizing noise [44] and uncov-
ered a surprising phenomenon. As expected, the success
probability decreases as the noise level increases; however,
for any noise level and any dimension d, we observed a
suppression of the noise in the successfully retrieved
channel. How the noise suppression behaves for arbitrary
N is an open question left for further investigation.
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