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Nonequilibrium conditions give rise to classes of universally evolving configurations of quantum many-
body systems at nonthermal fixed points. While the fixed point and thus full scaling in space and time is
generically reached at very long evolution times, we propose that systems can show prescaling much earlier
in time, in particular, on experimentally accessible timescales. During the prescaling evolution, some well-
measurable properties of spatial correlations already scale with the universal exponents of the fixed point
while others still show scaling violations. Prescaling is characterized by the evolution obeying conservation
laws associated with the remaining symmetry which also defines the universality class of the
asymptotically reached nonthermal fixed point. Here, we consider N ¼ 3 species of spatially uniform
three-dimensional Bose gases, with identical inter- and intraspecies interactions. During prescaling, the full
UðNÞ symmetry of the model is broken to UðN − 1Þ while the conserved transport, reflecting explicit and
emerging symmetries, leads to the buildup of rescaling quasicondensate distributions.
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Far from equilibrium, comparatively little is known about
the possibilities nature reserves for the structure and states of
quantummany-body systems. Much progress has been made
recently in the context of prethermalization [1,2], general-
ized Gibbs ensembles [3,4], many-body localization [5],
critical and prethermal dynamics [6–9], decoherence and
revivals [10], and (wave) turbulence [11–13].
Quantum systems quenched far from equilibrium can

show relaxation behavior distinctly different from what is
known in classical statistics. In particular, a system can
approach a nonthermal fixed point [14] exhibiting universal
scaling in time and space [15–17]. Universal behavior has
been predicted to occur in various different systems ranging
from the postinflationary early Universe [18,19], via the
dynamics of quark-gluon matter created in heavy-ion colli-
sions [20,21], to the evolution of dilute quantum gases
starting from a far-from-equilibrium initial state [15,22–24].
The concept of nonthermal fixed points paves the way to a
unifying description of universal dynamics. It remains,
though, an unresolved question how in general quantum
many-body systems evolve from a given initial state to such
a fixed point. In this Letter, we propose prescaling as a
generic feature of that evolution.
Universal scaling dynamics associated with a nonther-

mal fixed point is characterized by scaling evolution of
correlation functions. For example, the occupation number
naðk; tÞ ¼ hΦ†

aðk; tÞΦaðk; tÞi of an (N component) Bose
field Φaðk; tÞ, at the fixed point, evolves in a self-similar
manner according to

naðk; tÞ ¼ ðt=trefÞαfS;að½t=tref �βkÞ; ð1Þ

with universal scaling function fS;aðkÞ ¼ naðk; trefÞ
depending on a single d-dimensional variable only, scaling
exponents α, β, and some reference time tref within the
temporal scaling regime [15]. In particular, the scaling
exponent β defines the time evolution of a single character-
istic length scale LΛðtÞ ∼ tβ. Strictly speaking, the fixed
point itself is reached only in a certain scaling limit, such
as, for β > 0, at asymptotic times and infinite volume.
However, the question arises how the scaling limit is
reached and to what extent and when scaling is already
seen at finite times.
In equilibrium, fixed points of renormalization-group

flows describe correlations at a continuous, e.g., second-
order phase transition. They correspond to a pure rescaling
of the correlations, in momentum or position space, under
the change of the flow parameter such as a scale beyond
which fluctuations are averaged over. In the context of
critical phenomena as well as fundamental particle physics,
renormalization flows are known which are first attracted to
a partial fixed point [25]. In such situations, still away from
the actual fixed point, scaling violations can occur for some
quantities while others already show scaling and the further
flow be strongly constrained by a symmetry the system is
subject to.
Motivated by the general concept of partial fixed points

[26], we propose the existence of prescaling [27]. This
means that certain correlation functions, already at com-
paratively early times and within a limited range of
distances scale with the universal exponents predicted
for the fixed point which itself is reached only much later
in time and in a finite-size system may not be reached at all.
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During the stage of prescaling, (weak) scaling violations
occur in correlations at distances outside this range. Such
violations only slowly vanish as time evolves. In analogy to
the case of partial fixed points, we expect the underlying
symmetries of the system to play a key role for the
realization of prescaling. While part of the symmetries
can be broken, symmetries reflecting the conservation laws
associated with the nonthermal fixed point remain intact
during prescaling.
To reveal the existence of prescaling we employ an

isolated, (N ¼ 3)-component dilute Bose gas in d ¼ 3
spatial dimensions, quenched far out of equilibrium.
Numerically solving the field equations of motion within
a semiclassical Truncated-Wigner approach we find that,
during the approach of a nonthermal fixed point, the system
prescales. The phenomenon becomes visible in the short-
distance properties of correlation functions that measure,
e.g., the spatial coherence of the local phase-angle
differences between different components. We emphasize
that scaling violations affect not only the scaling exponents
but in particular also the shape of the scaling functions.
The spatially uniform Bose gases consist of identical

particles distinguished only by a single property such as the
hyperfine magnetic quantum numbers of the atoms forming
the gas. The system in three spatial dimensions is described
by a Uð3Þ symmetric Gross-Pitaevskii (GP) model with
quartic contact interaction in the total density,

H ¼
Z

d3x

�
−Φ†

a
∇2

2m
Φa þ

g
2
Φ†

aΦ†
bΦbΦa

�
; ð2Þ

where we use units implying ℏ ¼ 1, space-time field
arguments are suppressed, m is the particle mass, and it
is summed over the Bose fields, a, b ¼ 1, 2, 3, obeying
standard commutators ½Φaðx; tÞ;Φ†

bðy; tÞ� ¼ δabδðx − yÞ.
The gases are thus assumed to occupy the same space
and be subject to identical inter- and intraspecies contact
interactions quantified by g.
Universal scaling of the N-component Bose gas at

the nonthermal fixed point can be described analytically
in terms of a low-energy effective theory for the phase-
angle excitations of the Bose fields Φaðx; tÞ ¼
½ρð0Þa þ δρaðx; tÞ�1=2 expfiδθaðx; tÞg, on constant mean

background phases θð0Þa ¼ 0 and densities ρð0Þa . After
integrating out the density fluctuations δρa, the linear
modes of this effective model are given by the total
phase

P
N
a¼1 δθa, with Bogoliubov dispersion ωBðkÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εkðεk þ 2gρð0ÞÞ
q

, εk ¼ k2=2m, and N − 1 gapless

Goldstone excitations of the relative phases, e.g.,
δθa − δθ1, with free-particle dispersion ωGðkÞ ¼ εk. A
scaling analysis of the kinetic equation ∂tfaðk; tÞ ¼
I½f�ðk; tÞ governing the momentum-space redistribution
of the phase-angle excitations faðk; tÞ ¼ hδθaðk; tÞ
δθað−k; tÞi at the fixed point provides an analytical

prediction for α and β [28,29]. Here, I½f� is a quantum-
Boltzmann-type collision integral involving scattering
terms nonlinear in the distributions fa, arising from the
nonlinear couplings of the δθa. One obtains, for N → ∞ as
well as N ¼ 1, the values [28,29]

β ¼ 1=2; α ¼ βd ¼ 3=2; ð3Þ

consistent with the results of [15,24] for N → ∞. The
relation between α and β reflects the conservation of the
d-dimensional integral

R
k faðk; tÞ. This particular fixed

point has Gaussian character, i.e., in the limit t → ∞,
correlation functions factorize and the scaling of faðk; tÞ
implies the scaling of naðk; tÞ as well as of higher-order
correlators of the Φa [28].
Here, we numerically study the evolution of the system

towards this fixed point, starting from a far-from-equilibrium
initial condition at time t0 given by large occupations of
all fields, n0 ≫ 1, constant up to some cutoff scale, i.e.,
naðk; t0Þ ¼ n0Θðkq − jkjÞ [30]. The initial phase angles
θaðk; t0Þ of the Bose fieldsΦaðk; t0Þ ¼ ffiffiffiffiffi

n0
p

exp½iθaðk; t0Þ�
are chosen randomly on the circle and thus uncorrelated.
In practice, such an initial condition can be achieved by, e.g.,
a strong cooling quench or a transient instability [14,24].
Note that already this initial state does not obey the fullUð3Þ
symmetry but breaks it to Uð2Þ ≃ ½SUð2Þ × Uð1Þ�=Z2 as
does the evolving state. The Uð3Þ symmetry of (2) gives
rise to conservation laws, consistent with the reduced Uð2Þ
symmetry, which will be obeyed during prescaling [28,30].
The evolution induced by such an extreme initial condition
is characterized by transport of particles from k≲ kq towards
the infrared, while their energy is deposited by a few particles
at higher momenta, k > kq. In this way the system, after a
few collision times, shows universal scaling indicating the
approach of a nonthermal fixed point [15,23,24].
While the scaling behavior at a nonthermal fixed point is

commonly extracted from momentum-space correlators,
we find, however, that prescaling is more clearly seen in
position-space correlations. Based on momentum-space
treatments of nonthermal fixed-point scaling it is intuitive

to study the first-order spatial coherence function gð1Þa ðr; tÞ ¼
hΦ†

aðxþ r; tÞΦaðx; tÞi, which is obtained as the Fourier
transform of the occupation number naðkÞ. At large evolu-
tion times, close to the nonthermal fixed point, the coherence
function is expected to be spherically symmetric and

characterized by a universal function fsðxÞ as gð1Þa ðr; tÞ ¼
fsðkΛðtÞrÞ, r ¼ jrj. The inverse coherence length scales
as kΛðtÞ ∼ t−β.
The time evolution of the first-order coherence function

is shown in Fig. 1(a). We observe that the numerically
extracted form clearly differs from a pure exponential,

gð1Þa ðr; tÞ ∼ expf−kΛðtÞrg, which is predicted analytically
within the leading approximation of a low-energy effective
theory of nonthermal fixed points [28], with kΛðtÞ being the
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inverse coherence length of the system at time t. Instead, on
top of an approximately exponential falloff, the coherence
function also shows oscillatory behavior in r. The oscil-
lations indicate a structure developing in the system that
causes excitations of the field to switch its sign over a
distance on the order the inverse coherence length kΛ; i.e.,
the phase strongly varies on that characteristic scale.
We stress that, as the nonlinear term in (2) couples the

total densities, it suppresses total-density fluctuations but
not fluctuations of the local density differences between
the components. Hence, the spatial Goldstone excitations
of the intercomponent phase differences are predicted to
become relevant. As the first-order coherence function is
insensitive to the relative phases θa − θb, we additionally

study the second-order coherence function gð2Þab ðr; tÞ ¼
hΦ†

aðxþ r; tÞΦbðxþ r; tÞΦ†
bðx; tÞΦaðx; tÞi, see Fig. 1(b),

for ða; bÞ ¼ ð1; 2Þ.
A temporal scaling analysis of the numerically deter-

mined functions gð1Þ1 ðr; tÞ, gð2Þ12 ðr; tÞ provides a direct way to
extract the scaling exponent β via the single scale kΛðtÞ.
As long as, however, the fixed-point scaling is not yet
fully developed, the time evolution of the correlations is not
given by such a single scale. To account for that we provide
a general scheme for determining how the scaling behavior
is being approached. In order to approximate the correla-
tion functions, within a certain regime of r, without any
restriction to a particular scaling form we expand them
into a general Taylor series such that they take the form

gðlÞðr;tÞ¼cðlÞ0 þP∞
n¼1c

ðlÞ
n ðtÞðr−r0Þn. Here, r0 ≥ 0 marks

the expansion point, and l ¼ 1, 2 denotes the two different

types of correlators [30]. The time-dependent coefficients
of the series, dropping the l index, are written as
cnðtÞ ¼ cn½kΛ;nðtÞ�n, rescaling in time according to
kΛ;nðtÞ ∼ t−βn . In consequence, the coefficients of the
expansion rescale as cnðtÞ ∼ t−nβn . Each order of the
expansion can be seen as a probe for the scaling of
the correlations at a different distance r. The corresponding
scaling exponents can be written as βnðtÞ ¼ β þ δβnðtÞ.
A particular order of the expansion shows scaling with the
fixed-point exponent β when δβnðtÞ becomes small and
approximately constant in time. The system prescales when
βn ≈ β for at least one order n of the expansion. The fixed
point itself is, in a strict sense, only reached if the statement
holds for all orders of the expansion.
For our system we expect prescaling to emerge on short

distances and to subsequently spread towards longer
distances. Therefore, we truncate the expansion at the
fourth order and extract the coefficients cnðtÞ, with
n ¼ 1, 2, 3, 4, from a fit of the expansion to the data at
various instances of time t. To focus on short-distance
scaling properties of the system the fit is applied at
distances 5Ξ≲ r ≪ L, with linear system size L. The
lower bound of the fit range is used in order to not be
affected by the nonuniversal short-distance thermal peak
around zero distance. Taking the negative of the logarith-
mic derivative of cnðtÞ with respect to t and dividing by n
gives the scaling exponent βn at a particular instance in
time. To reduce fluctuations of the locally in time extracted
exponents we average the βn over a fixed time window.
Taking into account possible fluctuations of the scaling
exponents arising from the choice of the fit range we

(a) (b)

FIG. 1. (a) Time evolution of the first-order coherence function gð1Þ1 ðrÞ ¼ gð1Þ1 ðr; tÞ ¼ hΦ†
1ðxþ r; tÞΦ1ðx; tÞi at five different times

(colored dots). The shape of the correlation function is reminiscent of an exponential with a multiplicative oscillatory contribution.
It clearly exhibits violations of universal scaling at larger distances, which become weaker in time but still prevail even at long evolution
times. At the latest time shown, finite-size effects appear. (b) Corresponding second-order coherence function measuring the spatial

fluctuations of the relative phases between components 1 and 2, gð2Þ12 ðr; tÞ ¼ hΦ†
1ðxþ r; tÞΦ2ðxþ r; tÞΦ†

2ðx; tÞΦ1ðx; tÞi for the same

evolution times as in (a) (colored dots). The inset shows the rescaled coherence function t̄−α̃gð2Þ12 ðt̄−βr; trefÞ, with β ¼ 0.6, α̃ ¼ −0.2, and
t̄ ¼ t=tref , with reference time tref ¼ 31tΞ. The collapse of the data onto a single function, especially at short distances where

gð2Þ12 ðr; tÞ≳ 10−2, indicates that violations of scaling are considerably weaker than for gð1Þ1 . Time t is measured in units of
tΞ ¼ 2π½gρð0Þ�−1, distances r in units of the healing length scale Ξ ¼ ½2mgρð0Þ�−1=2.
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furthermore average over different such ranges [30].
Performing the whole analysis procedure gives the scaling

exponents βn shown in Fig. 2, for n ¼ 1;…; 4, for both, gð1Þ1

and gð2Þ12 .
The particular value βn ≃ 0.5 found, at late times, for the

scaling of kΛ;nðtÞ, for n ¼ 1, 2, parametrizing gð1Þ1 , and for

n ¼ 1;…; 4 in the case of gð2Þ12 , is in good agreement with
the analytically predicted value of β ¼ 1=2, cf. (3) [15,24].
Note that the finite size of the system does not lead to
scaling beyond t ≃ 400tΞ.
For gð1Þ1 we find that scaling in the higher orders of

the expansion is not yet fully developed within our time
window. This causes the scaling violations on larger
distances observed in Fig. 1. The converging flow of the
scaling exponents indicates the slow approach of a full
scaling form. In consequence, the system appears close to
the nonthermal fixed point but is still away from it.

Comparing Figs. 2(a) and 2(b) we conclude that differ-
ent correlators can enter the stage of prescaling on
different timescales. Therefore, establishing the full scal-
ing function and the associated scaling exponents is
observable-dependent. This can also be intuitively con-
cluded from comparing Figs. 1(a) and 1(b). In general,
we expect the fixed-point scaling to first show up in
correlators of observables that are most sensitive to the
relevant degrees of freedom of the underlying universal
behavior. Hence, our results indicate that the fixed-point
scaling of the model considered is dominated by relative-
phase fluctuations, forming the Goldstone modes of the
broken Uð3Þ symmetry [28,30]. Note that these excitations
are much less energetically constrained than the soundlike
excitations of the total density, which are suppressed by the
interaction term in (2) and associated with the overall Uð1Þ
symmetry. If N is large, the relative-phase fluctuations,
corresponding to spatial reshuffling of the local density
differences between the different components, will
in general dominate the nonequilibrium evolution of the

system, also of the single-component correlators gð1Þ1 . As
N ¼ 3, however, is comparatively small, a clear difference in

the scaling violations for gð1Þ1 and gð2Þ12 is seen.
We emphasize that the evolution during the stage of

prescaling already obeys the conservation laws associated
with the nonthermal fixed point. Both, naðk; tÞ and the

Fourier transform of gð2Þab ðr; tÞ allow a scaling collapse
according to (1) with exponents α ≃ dβ. This is consistent
with number conservation reflecting the Uð3Þ symmetry
of the Hamiltonian, as well as an emerging symmetry

which ensures the invariance of gð1Þa ð0; tÞ and gð2Þab ð0; tÞ,
respectively [30].
It is remarkable that the N ¼ 3 prescaling exponents βi

found for gð1Þa and gð2Þab as shown in Fig. 2 agree with the (for
N → ∞) analytically predicted value β ¼ 1=2 to a very
good accuracy. This suggests that the universality class of
the model is independent of the number of components N,
reflecting that the UðNÞ symmetry is broken during
prescaling to UðN − 1Þ and the dispersion of the domi-
nating Goldstone relative-phase modes is independent
of N.
A similar value for the scaling exponent β has been

found in recent experiments on a quasi one-dimensional
three-component spinor Bose gas [16] which have moti-
vated us to consider theUð3ÞGPmodel. In this experiment,
additional spin-changing interactions and Zeeman shifts
break the Uð3Þ symmetry, freezing out one of the relative-
phase degrees of freedom at low k. Nonetheless, given the
experimental parameters, the measured momentum range
is within a regime well described by the Uð3Þ model and
prescaling is expected to be detectable.
Prescaling, observable in the relatively early evolution

after a quench far from equilibrium, is expected to play
an important role in universal scaling evolution and its

(a) (b)

FIG. 2. Prescaling of position-space correlations. (a) Scaling
exponents βn describing the time evolution of kΛ;nðtÞ ∼ t−βn with
n ¼ 1, 2, 3, 4. The different exponents are deduced from Taylor
series coefficients cnðtÞ ¼ cn½kΛ;nðtÞ�n which are obtained by

means of a fit of the first-order coherence function gð1Þ1 ðr; tÞ,
shown in Fig. 1(a), at small distances r. The index n marks the
corresponding order of the Taylor series. The jump of the
exponents at tref þ Δt ≈ 285tΞ results from a sign change of
the fitted third- and fourth-order coefficients. This indicates that
the shape of the scaling form is altered more significantly on large
distances as compared to short distances as can already be
expected from Fig. 1(a). (b) Scaling exponents βn deduced from

an analogous Taylor series fit of gð2Þ12 ðr; tÞ [Fig. 1(b)]. Prescaling is
quantitatively seen by the scaling exponents βn settling into,
within errors, equal stationary values for the lower orders of the

fit. While gð1Þ1 ðrÞ, up to order r4 shows scaling violations, gð2Þ12 ðrÞ
already scales, to a good approximation, with the predicted
exponent β ¼ 1=2 for tref þ Δt≳ 250tΞ. For an individual fit,
the βn result from averaging over times ½tref ; tref þ Δt� with
Δt ¼ 146tΞ. The final data points shown are obtained by addi-
tionally averaging over a set of fits with different fit ranges. Errors
are given by the corresponding standard deviation of the
exponents of the set [30].
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accessibility in experiments with ultracold atomic gases.
Furthermore, from a renormalization-group perspective and
with respect to the given underlying symmetries we expect
prescaling during the time evolution of various types of
quantum many-body systems.
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