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We experimentally study many-body localization (MBL) with ultracold atoms in a weak one-
dimensional quasiperiodic potential, which in the noninteracting limit exhibits an intermediate phase
that is characterized by a mobility edge. We measure the time evolution of an initial charge density wave
after a quench and analyze the corresponding relaxation exponents. We find clear signatures of MBL when
the corresponding noninteracting model is deep in the localized phase. We also critically compare and
contrast our results with those from a tight-binding Aubry-André model, which does not exhibit a single-
particle intermediate phase, in order to identify signatures of a potential many-body intermediate phase.

DOI: 10.1103/PhysRevLett.122.170403

Introduction.—In the past decade, it has been established
that an isolated one-dimensional (1D) quantum system with
strong quenched disorder can be localized, even if finite
interactions are present [1–19]. Such a phenomenon, now
known as many-body localization (MBL), represents a
generic example of ergodicity breaking in isolated quantum
systems. In particular, the eigenstate thermalization hypoth-
esis (ETH) [20,21] is strongly violated in such systems,
leading to the inapplicability of textbook quantum statis-
tical mechanics. Recently, experiments have found strong
evidence for the existence of an MBL phase in interacting
1D systems with random disorder [22–24] and in models
with quasiperiodic potentials [25,26] captured by the
Aubry-André (AA) tight-binding lattice model [7,27,28].
One hallmark of the noninteracting AA model is that the
localization transition occurs sharply at a single disorder
strength. As a result, across the transition, all single-particle
eigenstates in the spectrum suddenly become exponentially
localized without mobility edges.
In contrast, there are many other 1D models which

exhibit a single-particle mobility edge [29–37], i.e., a
critical energy separating extended and localized eigen-
states in the spectrum. As a result, a single-particle
intermediate phase (SPIP) characterized by a coexistence
of localized and extended eigenstates in the energy spec-
trum appears in the phase diagram (Fig. 1). Experimental
signatures of such an intermediate phase have been recently
observed using ultracold atomic gases in a 1D quasiperi-
odic optical lattice described by a generalized Aubry-André
(GAA) model including next-nearest-neighbor tunneling
[38,39], as well as in a momentum-space lattice [40]. In the

presence of interactions, two natural questions arise.
(i) Does an MBL phase exist in a model, which in the
limit of vanishing interactions exhibits an SPIP? This
question has been addressed in several numerical studies,
predicting MBL in some cases but not in others [13,41].
Definite conclusions, however, are often challenged by
finite-size effects. (ii) Does the SPIP survive finite inter-
actions to become a many-body intermediate phase
(MBIP)? This would suggest the existence of an inter-
mediate phase, where extended and localized many-body
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FIG. 1. Heuristic phase diagram of the GAA model: The
noninteracting GAA model exhibits three phases (single-particle
extended, SPIP, and single-particle localized), with the phase
boundary denoted by A and B. Here Δ is the strength of the
detuning lattice [Eq. (2)], while U is the strength of the Hubbard
on-site interactions [Eq. (4)]. The situation with finite interactions
is unknown in theory, although a full MBL phase is believed to
exist in the regime, where the corresponding noninteracting
system is single-particle localized. Below the single-particle
localization transition point A, interactions will lead to a thermal
phase, where the ETH holds. The existence of an MBIP (marked
in gray) is highly debated.
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states coexist in the energy spectrum [15,16,42,43]. Note
that this does not necessarily require the existence of a
many-body mobility edge; instead, a coexistence of local-
ized and extended many-body states at a fixed energy
density has been predicted in certain models [43]. The
existence of an MBIP is highly debated in theory [44,45],
although there have been extensive numerical simulations
in the literature asserting the existence of an MBIP in
various different systems [9–17,42,43,46–49]. Given the
direct observation of the SPIP in recent experiments
[39,40], this issue takes on immediate experimental sig-
nificance regarding the fate of this noninteracting inter-
mediate phase as interactions are added.
In this work, we address the two questions raised above

by studying quench dynamics from an initial charge-
density wave (CDW) [25] with ultracold fermionic atoms
in a quasiperiodic optical lattice in a large system with more
than 100 lattice sites. We investigate the relaxation dynam-
ics in the interacting GAA model and contrast them with
the interacting AA model, which has been studied in
previous works [25,50]. The GAA model takes the con-
tinuum limit of the AA tight-binding lattice model and
contains next-nearest-neighbor tunnel couplings. This
breaks the self-duality of the AA model and, therefore,
leads to the appearance of an intermediate phase in the
noninteracting regime [39]. In the presence of interactions,
the nature of the phase diagram of the GAA model is
unknown (Fig. 1). Although MBL is believed to exist in
this system, it has not been verified in experiments. We
obtain two main results: (i) We establish the existence of
MBL in a new model, i.e., the GAA model, in a regime
where its noninteracting counterpart is fully localized;
(ii) we find no discernible difference in the relaxation
dynamics between the interacting GAA and AA model for
all system parameters within the experimentally accessible
timescales.
Experiment.—Our experimental system consists of a

primary lattice with a wavelength of λp ¼ 532 nm and
two deep orthogonal lattices at a wavelength of 738 nm,
which divide the atomic cloud into an array of 1D tubes
with lattice spacing d ¼ λp=2. The full-width-half-
maximum size of the cloud is about 150 lattice sites with
an average filling of ∼0.5 atoms per lattice site. A detuning
lattice (λd ¼ 738 nm) incommensurate with the primary
lattice introduces quasiperiodicity and enables the realiza-
tion of both the AA and the GAA models, depending
on the primary lattice depth. In the noninteracting limit,
such a system is described by the following continuum
Hamiltonian (incommensurate lattice model):

Ĥ¼−
ℏ2

2m
d2

dx2
þVp

2
cosð2kpxÞþ

Vd

2
cosð2kdxþϕÞ; ð1Þ

where ki ¼ 2π=λi (i ¼ p, d) is the wave vector of the
corresponding lattice, m is the mass of the atoms, Vi

(i ¼ p, d) is the respective lattice depth, and ϕ is the
relative phase between the primary and detuning lattice.
We will use the recoil energy of the primary lattice
Ep
r ¼ ℏ2k2p=ð2mÞ with the reduced Planck constant ℏ as

the energy unit throughout this work.
In the tight-binding limit (i.e., when the primary lattice

potential Vp is deep), the continuum Hamiltonian in Eq. (1)
maps onto the tight-binding 1D AA model:

ĤAA ¼ −J0
X

j;σ

ðĉ†jþ1;σ ĉj;σ þ H:c:Þ

þ Δ
X

j;σ

cosð2παjþ ϕÞn̂j;σ; ð2Þ

which describes our experiment sufficiently well at a
primary lattice depth Vp ≳ 8Ep

r [39]. In the above
Hamiltonian, J0 is the nearest-neighbor hopping energy,
and Δ is the strength of the detuning lattice. The operator
ĉ†j;σ (ĉj;σ) denotes the creation (annihilation) operator for
spin σ ¼ ↑;↓ on lattice site j, and n̂j;σ ¼ ĉ†j;σ ĉj;σ is the
corresponding fermion number operator. The incommen-
surability α ¼ λp=λd ≃ 532=738 is the ratio of primary and
detuning lattice wavelengths. The noninteracting AA
model [Eq. (2)] is well known to have a localization
transition at Δ ¼ 2J0, when all energy eigenstates convert
from being extended to localized [7].
Beyond the tight-binding limit, corrections have to be

added to the AA model. These corrections can be derived
via a Wegner flow approach [38], leading to a GAA model
Hamiltonian ĤGAA ¼ ĤAA þ Ĥ0, with

Ĥ0 ¼ J1
X

j;σ

cos

�
2πα

�
jþ 1

2

�
þ ϕ

�
ðĉ†jþ1;σ ĉj;σ þ H:c:Þ

− J2
X

j;σ

ðĉ†jþ2;σ ĉj;σ þ H:c:Þ

þ Δ0X

j;σ

cosð4παjþ 2ϕÞn̂j;σ: ð3Þ

For a detailed description of the parameters, see Ref. [51].
Note that the GAA model of Eq. (3) is by definition non-
nearest-neighbor and, therefore, cannot be characterized by
a single dimensionless parameterΔ=J0 as in the AAmodel.
Experimentally, the GAA model is realized with a

shallower primary lattice with Vp ¼ 4Ep
r [38,39]. We

employ an atom cloud of about 5 × 104 fermionic 40K
atoms at a temperature of 0.15ð2ÞTF, where TF is the Fermi
temperature in the dipole trap, and load it into the 3D
optical lattice. The gas consists of an equal spin mixture of
the states j↑i≡ jmF ¼ −7=2i and j↓i≡ jmF ¼ −9=2i of
the F ¼ 9=2 ground state hyperfine manifold. On-site
interactions can be controlled via a magnetic Feshbach
resonance at 202.1 G, resulting in tunable Fermi-Hubbard-
type interactions, described by
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ĤU ¼ U
X

j

n̂j;↑n̂j;↓: ð4Þ

Using a superlattice with wavelength 2λp, an initial
CDW is created in the primary lattice, where only even sites
are occupied and the spin states are randomly distributed
[25]. The formation of doubly occupied sites is suppressed
by strong repulsive interactions during lattice loading such
that the fraction of doublons is below our detection limit
[25]. Time evolution is initiated by quenching the primary
lattice to a variable depth Vp and simultaneously super-
imposing the detuning lattice with a strength Vd and phase
ϕ relative to the primary lattice. To detect the localization
properties of the system, we measure the density imbalance
between atoms on even (Ne) and odd (No) sites
I ¼ ðNe − NoÞ=ðNe þ NoÞ. This quantity is extracted
using a band-mapping technique [53,54]. Because of the
CDW initial state, a finite steady-state imbalance I directly
signals the presence of localized states through the reten-
tion of the initial state memory following the quench.
Time evolution of the imbalance.—Many theoretical

studies have focused on the regime of weak interactions
U=J0 ≤ 1 searching for an MBL phase as well as an MBIP
[10,13,15,16,35,38,46,49]. In this work, we measure the
imbalance as a function of time for a fixed interaction
strength U=J0 ¼ 1 and various detuning lattice strengths
Vd in the AA and GAAmodel. The imbalance is monitored
between 10τ and 100τ for the GAA model or between 10τ
and 40τ for the AA model, where τ ¼ ℏ=J0 is the tunneling
time in the respective model. The different measurement
times are due to the different values of τ in the two models,
since they differ in the primary lattice depth (see Ref. [51]).
Note that the actual measurement time of about 10 ms is
approximately identical for both models, as it is limited by
the presence of residual external baths acting independently
of the studied model [55,56]. We omit the initial dynamics
of the imbalance at t < 10τ showing damped oscillations
accompanied by a rapid decay from the starting value
Iðt ¼ 0Þ ¼ 0.90ð2Þ [25,50].
In Fig. 2, we present a comparison of the time traces for

both models for two different detuning lattice strengths on a
doubly logarithmic scale. The single-particle localization
transition of the AA model and the extended-to-SPIP
transition in the GAA model are both located at roughly
Δ=J0 ¼ 2 [27,38,51]. Below the transition, the imbalance
decays to zero quickly within a few tunneling times due to
the absence of localized states. Therefore, we focus on
detuning lattice strengths larger than the critical detuning
Δ=J0 ¼ 2. In the weakly interacting regime (U=J0 ¼ 1),
we find that the time traces at a weak detuning strength
(Δ=J0 ¼ 2.1), just above the single-particle localization
transition [51], exhibit a considerable imbalance decay over
the observation time, irrespective of the underlying model.
The second set of traces (Δ=J0 ¼ 3.1) in Fig. 2 is recorded
deep in the localized phase of both corresponding non-
interacting models. We find that the imbalance decay in the

second set is much slower compared to the first one, and the
overall imbalance values are distinctly larger at all meas-
urement times in the second set. This is again valid for the
AA as well as the GAAmodel. The experimental data are in
reasonable agreement with exact diagonalization simula-
tions with eight spinful particles on 16 lattice sites, which
were averaged for random initial spin configurations [51].
The offset is most likely caused by the harmonic trap
present in the experiment [25].
We attribute the different behaviors of the imbalance

dynamics of the AA model at different disorders to a many-
body localized and many-body extended (i.e., ETH) phase
[7,25], above and below an interaction-dependent critical
disorder strength, respectively. Because of the remarkably
similar dynamics in the GAA model, we infer that MBL
exists in this model despite the presence of an SPIP in the
noninteracting limit. The data further show that we have a
many-body extended phase at weak detuning, while for
strong detuning the interacting system is likely many-body
localized. Finally, we observe that the imbalance time
traces of the two models are indistinguishable within our
resolution, both above and below the MBL transition.
Relaxation exponents.—To better quantify the relaxation

dynamics, we fit the imbalance time traces using a power-
law function I ∝ t−ξ (Fig. 2) and extract the resulting
exponents ξ as shown in Fig. 3. Note that a power-law
description for a system with quasiperiodic potentials is not
motivated by the standard Griffiths description, which is
presumably applicable only for randomly disordered sys-
tems [18,57–59]. Nonetheless, we find our data to be well

FIG. 2. Time evolution of the imbalance: Measured imbalance
time traces in the AA model [Vp ¼ 8.0ð1ÞEp

r ] and the GAA
model [Vp ¼ 4.0ð1ÞEp

r ] at a fixed interaction strength U=J0 ¼ 1.
Every data point is averaged over six different detuning phases ϕ,
and error bars denote the standard error of the mean. The dashed
lines are power-law fits to the experimental data. The solid
lines are numerical simulations of the time traces in a system of
L ¼ 16 sites [51] and the shaded regions indicate numerical
uncertainties.
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described by such power laws. For a detailed discussion of
the applicability of this picture, see Ref. [50]. In the GAA
model, we observe that the exponents reach a value of
0.33(5) just above the single-particle localization transition
point; for larger detuning lattice strengths, the exponents
decrease and finally converge to a constant positive plateau
around Δ=J0 ¼ 3.0ð2Þ, which is significantly larger than
the single-particle localization transition point Δ=J0 ≃ 2.6
[51]. Although the relaxation exponent is expected to be
strictly zero (ξ ¼ 0) in the MBL phase, we regard our
system to be many-body localized in this regime and
attribute the residual decay to the existence of external
baths. Off-resonant photon scattering [56,60] and couplings
between different 1D tubes [55] give rise to a finite
imbalance lifetime even in the many-body localized phase.
Moreover, the experimental exponents are in reasonably
good agreement with numerical simulations in a system
with L ¼ 16 sites [51]. This observation implies that
MBL indeed can occur in a system with an SPIP at least
in a regime where the corresponding noninteracting model
is fully localized (Fig. 3). A larger critical disorder strength
is expected, since interactions tend to delocalize the
system [25].
As pointed out above, below the single-particle locali-

zation transition, the imbalance decay is very fast, corre-
sponding to a thermal phase. For intermediate detuning
strengths between ETH and MBL, we observe slow

dynamics (brown shaded area in Fig. 3), which are
characterized by finite relaxation exponents. A similar
intermediate phase of slow dynamics has been found
previously in the interacting AA model [50]. In this
intermediate phase of the GAA model, one could expect
that the presence of extended states gives rise to a faster
relaxation of the imbalance, since the single-particle
extended states may act as a bath for the coexistent
localized states, when coupled by interactions. In order
to investigate this assumption, we compare the relaxation
exponents of the GAA model and the AA model (Fig. 4),
where a similar mechanism is expected to be absent. The
dynamics turn out to be indistinguishable within the
experimental uncertainties across all investigated detuning
strengths. This fact provides an indication that the extended
states in the noninteracting spectrum do not act as an
effective bath thermalizing the whole system, at least within
the timescales of our experiment. We also numerically
investigate longer evolution times, where we find hints
towards a faster relaxation in the intermediate regime in the
GAA model, although this observation is not fully con-
clusive due to finite-size limitations [51].
It has been proposed that an MBIP may also exist at

large interactions due to symmetry-constrained dynamics
[11]. We perform measurements at stronger interactions
U=J0 ¼ 4 again for both models as shown in Fig. 4 and
Ref. [51]. The exponents at the same detuning strengths are
overall larger at stronger interactions, accompanied by a
shift of the critical disorder strength for MBL. Also, for the
case of strong interactions we find that the exponents are
remarkably similar.
Outlook.—We have experimentally and numerically

investigated the localization transition of the GAA model
in the presence of interactions. We find that, for large

FIG. 3. Power-law exponents: Measured relaxation exponents
as a function of the detuning strength for the GAA model at
U=J0 ¼ 1. The error bars denote the uncertainty of the fit. The
blue shaded region shows the result of numerical simulations
including fit uncertainties, while the brown shaded area indicates
a regime of slow dynamics with finite relaxation exponents
reminiscent of the slow dynamics observed in the interacting AA
model [50]. The lower part of the figure represents the situation in
the noninteracting system which exhibits an extended and a
localized phase as well as a single-particle intermediate phase
whose numerically predicted width [51] is represented by the
gray shaded region.

FIG. 4. Power-law exponents: Direct comparison of the relax-
ation exponents for both models and interaction strengths. Error
bars denote the uncertainty of the fit. Solid lines are guides to the
eye. The width of the corresponding SPIP for various lattice
depths can be found in Ref. [51].
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enough detuning lattice strengths, the system likely reaches
the many-body localized phase when all single-particle
states in the corresponding noninteracting limit have been
localized. Furthermore, we compare the experimental
relaxation exponents in the AA model and the GAA model
for multiple detuning and interaction strengths and find that
they are similar on short timescales in agreement with
numerical simulations, indicating that the coexistent
extended states do not serve as an efficient bath within
the experimentally accessible timescales for the initial
states probed in this work. Generally, our results do not
rule out the existence of an MBIP, since the experiment is
limited to finite times due to the presence of external baths,
and the imbalance measurement alone may not be a reliable
diagnostic to decisively detect it. Note, however, that these
considerations are based on the assumption that no inter-
mediate phase exists in the interacting AA model; however,
the intermediate regime of slow dynamics [50] is not yet
fully understood [61] and requires further investigations.
A possible explanation of the qualitatively similar relax-
ation dynamics observed in this work could be that the
mechanism responsible for the slow dynamics in both
models is indeed of a similar physical origin. In the future,
it is worthwhile to extend the experimental measurements
to much longer times in order to investigate the stability of
MBL and reveal potential delocalization mechanisms
introduced by the spin degree of freedom [62–67]. In
addition, it is desirable to find a definitive experimental
diagnostic for the possible many-body intermediate phase,
which is currently lacking.
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