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An insulator differs from a metal because of a different organization of the electrons in their ground
state. In recent years this feature has been probed by means of a geometrical property, the quantum metric
tensor, which addresses the system as a whole, and is therefore limited to macroscopically homogenous
samples. Here we show that an analogous approach leads to a localization marker, which can detect the
metallic versus insulating character of a given sample region using as the sole ingredient the ground state
electron distribution, even in the Anderson case (where the spectrum is gapless). When applied to an
insulator with a nonzero Chern invariant, our marker is capable of discriminating the insulating nature of
the bulk from the conducting nature of the boundary. Simulations (both model Hamiltonian and first
principles) on several test cases validate our theory.
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The difference between an insulating material and a
conducting one is commonly attributed to the spectral
properties of the system or to the localization properties of
the electronic states at the Fermi level (in a mean-field
framework). A paradigm change occurred in 1964, when
W. Kohn defined the insulating state making neither
reference to electronic excitations nor to Fermi-level
properties [1,2]: the qualitative difference between insula-
tors and conductors manifests itself also in a different
organization of the electrons in their many-body ground
state. A series of more recent papers [3–6] has established
Kohn’s pioneering viewpoint on a sound formal and
computational basis, rooted in geometrical concepts.
These developments followed (and were inspired by) the
modern theory of polarization, based on a Berry phase [7].
The theory—as developed so far—addresses only macro-
scopically homogeneous systems: either crystalline corre-
lated systems [3,8–11] or independent-electron systems. In
the latter case, spectral properties alone cannot qualitatively
discriminate Anderson insulators from metals (both are in
fact gapless at the Fermi level), while the geometrical
theory is very effective for the task [12,13].
In this Letter, we limit ourselves to noninteracting

electrons, where for inhomogeneous cases (e.g., in hetero-
junctions) the metallic or insulating character of a given
region is usually probed via the local density of states
(LDOS). Here we show—by performing simulations over
many test cases—that the metallic or insulating character of
the electronic ground state can be probed locally, even in the
Anderson-insulating case, where the LDOS is of no avail.
The modern formulation of Kohn’s theory is based on the

quantum metric tensor [14]: it is an extensive quantity

having the dimensions of a squared length. We address here
the metric tensor per unit volume (area in 2D, length in 1D);
for a macroscopically homogeneous sample we indicate
this intensive quantity as Lαβ (Greek subscripts are
Cartesian coordinates throughout). In the noninteracting-
electron framework all properties of the many-electron
ground state are embedded in the ground state projector; for
the sake of simplicity, we give the formulation for “spinless
electrons.” For a bounded sample with square-integrable
orbitals, the projector is

P ¼
X

ϵj≤μ
jφjihφjj; ð1Þ

where μ is the Fermi level, jφji are the single-particle
orbitals, and ϵj the corresponding energies. The quantum
metric tensor has the transparent meaning of the second
cumulant moment of the position operator, or equivalently
of the ground-state fluctuation of the dipole [4–6]:

Lαβ ¼
1

V
ðhrαrβi − hrαihrβiÞ

¼ −
1

V

Z
drhrjP½rα;P�½rβ;P�jri: ð2Þ

In the large-sample limit, Lαβ is finite in all insulators, and
diverges in all metals; simulations and heuristic arguments
altogether suggest that for metallic samples the divergence
is of the order of the linear dimension of the sample [12,15].
If the bounded sample is a crystallite, the integrand in the
second line of Eq. (2) is lattice periodical in the bulk region
of the sample.
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Given that the second line of Eq. (2) is (minus) the trace
of the operator P½rα;P�½rβ;P�, divided by the sample
volume, we address here the issue of whether the insulating
or metallic organization of the electrons in the ground state
(in Kohn’s words) can be probed by evaluating the trace per
unit volume locally, i.e., by integrating the local function

F αβðrÞ ¼ −hrjP½rα;P�½rβ;P�jri ð3Þ

over a small region in the bulk of the sample. For a
homogeneous bounded crystallite, we therefore are going
to replace Lαβ, Eq. (2), with its local counterpart, i.e.,

L̃αβ ¼
1

Vcell

Z

cell
drF αβðrÞ; ð4Þ

where the cell is chosen at the crystallite center. An
analogous approach is adopted for either the disordered
cases (where the central cell is replaced by a larger region)
and for inhomogeneous cases (where the cell is chosen in
the appropriate region). The main object of the present
Letter is the real symmetric part of L̃αβ, which we are going
to name localization marker.
We start with 1D bounded chains, by adopting a tight-

binding nearest-neighbor Hamiltonian. In the crystalline
two-band case the chain is either insulating or metallic
according towhether the Fermi level lies in the gap or across
a band; in the disordered case the spectrum is gapless, but the
chain is always Anderson insulating [16]. We adopt the
same Hamiltonian as in Ref. [12], where the metric tensor
L ¼ Lxx, Eq. (2), has been addressed; as shown therein, L
diverges in metallic chains while it converges—to very
different values—in the band-insulating and Anderson-
insulating cases.
We have performed simulations over 1D “heterojunctions”

of up to 6 000 sites, made of two homogenous half-chains, in
all the possible combinations of metal, band insulator, and
Anderson insulator; the most significant results are displayed
in Fig. 1 [17]. The top panel shows the LDOS (crystalline
versus disordered), very similar to the global density of states
published in Ref. [12] (gapped versus gapless). This LDOS
implies that by setting μ ¼ 0 the left and right half-chains are
band insulating and Anderson insulating, respectively, while
by setting μ ¼ −1 the left and right half-chains are metallic
and Anderson insulating, respectively. In both cases the
LDOS cannot discriminate correctly, while L̃ accomplishes
the task; the metric tensor L, also shown, yields a kind of
average over the whole chain.
Next we switch to 2D simulations with model tight-

binding Hamiltonians on a honeycomb lattice with two
sites per primitive cell [17]; a typical flake is displayed
in Fig. 2. The electronic structure is described by the
orthonormal basis set jχRl

i, where Rl is a site index. The
ground-state projector, Eq. (2), assumes then the general
form

P ¼
X

RlRm

PðRl;RmÞjχRl
ihχRm

j: ð5Þ

We start with the validation of our local theory in the
simplest cases, where the trace per unit volume of Eq. (3)
clearly discriminates the metallic versus insulating regions
and provides indeed the same message as the LDOS. We
stress once more the conceptual difference: the former
approach probes the ground state, while the latter probes
the spectrum.
Some results are provided in detail in the Supplemental

Material [17]; here we only discuss the insulating (half-
filling) homogeneous case: Fig. 3 shows the Cartesian trace
of Lαβ, of L̃αβ, and of an analogous “bulk” quantity where
the integral in Eq. (4) is evaluated over N=4 sites (see
Fig. 2), as a function of the flake size. It is remarkable that

FIG. 1. Results for 1D heterojunctions. Top panel: LDOS for a
chain which is crystalline in the left half, and disordered in the
right half. Middle panel: L̃ marker for a μ ¼ 0 chain (band
insulating in the left half, and Anderson insulating in the right
half). Botton panel: L̃ marker for a μ ¼ −1 chain (metallic in the
left half, and Anderson insulating in the right half).
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the total trace, Eq. (2), converges to the asymptotic
quantum metric quite slowly, only like the inverse linear
size of the system; the localization marker L̃αβ converges
instead exponentially. In the crystalline metallic case L̃αβ

diverges like the linear size of the flake (Supplemental
Fig. 1 [17]). We have also verified that our marker can
probe the metallic versus insulating character of the differ-
ent regions of an inhomogenous sample, by addressing a
flake cut through the center by a vertical interface [17].
We also address test cases where time-reversal invariance

is absent and the insulator is topological, having a nonzero
Chern invariant: we will show that our marker clearly
highlights the insulating character of the bulk and the
conducting character of the boundary. To this aim we adopt
the Haldane Hamiltonian [18], for both a crystalline and a
disordered flake [17] in the topological insulating regime. It
is well known that the flake is insulating in its bulk, while

there are topologically protected metallic states at the
boundary: it is therefore worth investigating how the
different versions of the marker—Cartesian traces of Lαβ

and L̃αβ—actually behave.
The relevant quantities are plotted in Fig. 4. The bottom

panel shows that the trace of L̃αβ diverges like the linear
dimension L of the flake when the cell in Eq. (4) is chosen
at the flake boundary (the average over the boundary cells
is shown): the boundary is in fact metallic. The top panel
shows that the trace of L̃αβ converges fast when the cell is
instead chosen in the bulk, and confirms that the bulk is
insulating.
The top panel of Fig. 4 also shows that the trace of Lαβ

(labelled “Flake”) converges too, although to a large value.
The rationale for the latter feature is that each boundary cell
contributes to the integral in Eq. (2) a term proportional to
L, while the number of boundary cells is also proportional
to L. The contribution to the total trace is therefore
extensive: the trace per unit area is therefore finite (not
divergent).
In the topological case, the insulating behavior is

extremely robust with respect to perturbations; here we
address the case of strong on-site disorder [17]. By
comparing Fig. 4 to Fig. 5, it is easily realized that the
strong on-site disorder introduces some fluctuations, but
does not change at all the key message.
Finally, we are going to present 3D first principles

simulations, not performed on bounded crystallites;
instead, we address a superlattice made of slabs of A

FIG. 2. A typical flake (2D crystallite). We have considered
flakes with up to 8 190 sites, all with the same aspect ratio; the
one shown here has 1806 sites. The localization marker L̃αβ is
evaluated either on the central cell (two sites) or by means of
analogous integrals on the “bulk” region (1

4
of the sites).

FIG. 3. Half-filling homogenous crystalline flake. Cartesian
trace of the localization tensor Lαβ, Eq. (2) (labeled “Flake”), of
our localization marker L̃αβ (labeled “Cell”), and an analogous
formula evaluated over the “bulk region” (labeled “Bulk”), as a
function of the flake size.

FIG. 4. Top panel: Cartesian trace of Lαβ and of L̃αβ for a flake
cut from a crystalline topological insulator with nonzero Chern
number, as a function of the flake size. Labels as in the previous
figures. Bottom panel: Cartesian trace of the localization marker
L̃αβ, averaged over the boundary cells.
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and B materials, within periodic boundary conditions
(PBCs). To this aim, we rewrite the second line of
Eq. (2) as [5,6]

Lαβ ¼
1

V

Z
drdr0ðr − r0Þαðr − r0ÞβjhrjPjr0ij2; ð6Þ

which allows switching to an unbounded sample within
PBCs.
If the stacking axis is x, and A and B are both crystalline

materials, then Eq. (6) leads to a localization marker of the
form

L̃yy ¼
1

Vcell

Z

Vcell

dr
Z

dr0ðy − y0Þ2jhrjPjr0ij2; ð7Þ

where the cell is chosen in the middle of either the A or B
regions; the insulating (metallic) nature of the slab is then
detected by the convergence (divergence) of L̃yy. We have
validated Eq. (7) by means of PBCs tight-binding simu-
lations, which provided results equivalent to those for a
bounded flake (Supplemental Fig. 3 [17]).
Unfortunately, a first principles implementation of Eq. (7)

as it stands is computationally prohibitive.We therefore need
a simplified tool, capable of detecting only whether L̃yy
diverges or converges, without providing its precise value
in the insulating cases. We adopt the so-called Wannier-
interpolation scheme [19], which accurately maps the Kohn-
Sham Hamiltonian on a tight-binding-like one, capable of
describing both insulating and metallic systems. Here we
label the basis set as jχRl

i, where Rl is the orbital center:

Rl ¼ hχRl
jrjχRl

i: ð8Þ

With these notations, the projected P is identical in form to
Eq. (5), where

Pð0l;RmÞ ¼ hχ0l jPjχRm
i; ð9Þ

and the matrix elements are evaluated using a discrete k-
point mesh.
If the two basis centers 0l and Rm are both in the

middle of a given slab, and distant between themselves in
the y (transverse) direction, the qualitative asymptotic
behavior of hrjPjr0i is reflected into the behavior of the
matrix elements in the jRm − 0lj → ∞ limit. There are
several different ways of numerically inspecting asymptotic
behaviors. Here—inspired by the tight-binding version of
Eq. (7)—we choose to evaluate the convergence and
divergence of the sum

Lyy ¼
1

Vcell

X

0l

X

Rm

ð0ly − RmyÞ2jPð0l;RmÞj2: ð10Þ

We stress that the numerical value of Lyy, Eq. (10), is
different from the one of L̃yy, Eq. (7); the key point is that
the terms in the summation become asymptotically exact
when the basis centers are far apart.
Our case study is a periodically repeated (001) supercell

of GaAs and Al lattice-matched slabs, with double As
termination [17]. In this geometry the metal and the
semiconductor cubic axes are rotated by 45° around
(001), and the lattice-matching condition sets the ratio of
the two cubic lattice constants equal to 1=

ffiffiffi
2

p
. Our supercell

contains 9 Al layers, 12 Ga layers, and 13 As layers, for a
total of 43 atoms (there are two Al atoms per layer).
We show in Fig. 6, dashed line, the LDOS at the Fermi

level, filtered with a double macroscopic average [29,30].
As it must be, the LDOS is finite in the metallic region and
goes to zero in the insulating region: the exponential tail is
owed to evanescent gap states. The novelty of the present
Letter is to show, according to Kohn’s viewpoint, that the
metallic versus insulating regions are characterized by a
different organization of the electrons in the many-body
ground state, without any reference to eigenvalues or
spectral properties.
In the GaAs region all the solid lines in Fig. 6 converge

fast to the same value. We remind readers that our
simplified markerLyy does not provide the same numerical
value as the exact localization marker L̃yy; the finiteness of
Lyy proves nonetheless the insulating nature of the ground
state electron distribution in the GaAs region. In the Al
region, instead, the different solid lines show the diver-
gence ofLyy—ergo of L̃yy as well—linear with the number
of k points.
In conclusion, we have shown that the insulating nature

of the ground electron distribution can be probed locally, by
means of a marker explicitly expressed in terms of the

FIG. 5. Same as in Fig. 4 for a topological flake with strong on
site disorder [17].
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ground state and nothing else, in particular avoiding any
reference to either spectral properties or to localization
properties of the electronic states at the Fermi level. Besides
the case of band insulators (model and first principles), our
test cases include Anderson insulators (where the spectral
properties are of no avail) and topological insulators (where
the bulk is insulating and the boundary is conducting). The
simulations presented here address solely independent
electrons; nonetheless we argue that our local theory of
the insulating state can be extended to correlated electrons
as well [17]. Our Letter paves the way for a unified
complete theory of the insulating state, including in
principle all kinds of insulators, both homogeneous
and heterogeneous (crystallites, heterojunctions, nanostruc-
tures), through a localization marker based on the ground-
state electronic distribution only.
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