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Fulde, Ferrell, Larkin, and Ovchinnikov (FFLO) predicted inhomogeneous superconducting and
superfluid ground states, spontaneously breaking translation symmetries. In this Letter, we demonstrate
that the transition from the FFLO to the normal state as a function of temperature or increased Fermi surface
splitting is not a direct one. Instead, the system has an additional phase transition to a different state where
pair-density-wave superconductivity (or superfluidity) exists only on the boundaries of the system, while
the bulk of the system is normal. The surface pair-density-wave state is very robust and exists for much
larger fields and temperatures than the FFLO state.
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In regular BCS theory, the formation of Cooper
pairs binding together two electrons with opposite spin
and opposite momentum results in a uniform super-
conducting state [1,2]. In 1964, Fulde and Ferrell [3]
and Larkin and Ovchinnikov [4] (FFLO) independently
predicted that under certain conditions there should
appear an inhomogeneous state in the presence of a
strong magnetic field, where Zeeman splitting of the
Fermi surfaces leads to the formation of Cooper pairs
with nonzero total momentum. Similar inhomogeneous
states can form and are of great interest in cold-atom
gases [5–8] and in color superconducting states of quarks
that are expected to form in cores of neutron stars [9].
Various predictions indicate that the FFLO state may host
many rich physical phenomena including topological
defects and phase transitions associated with these
defects [10–12]. Other interesting studies include the
orbital third critical magnetic field [13] as well as states in
samples with nontrivial geometries [14,15] and multiple
competing inhomogeneous states in two-dimensional
systems [16]. For a more detailed review of the FFLO
state, see Refs. [17–19].
The anticipated interesting properties made this state

highly sought after, yet there is still no universally accepted
experimental proof. The orbital effect is significantly
stronger than the paramagnetic effect in most supercon-
ductors, hindering observations of the FFLO state. More
specifically, the upper critical orbital field must be sig-
nificantly larger than the Chandrasekhar-Clogston limit
[20,21] for a FFLO regime to exist. Materials where
possible FFLO states were discussed are heavy fermion
superconductors [22], layered organic superconductors
[23], such as λ-ðBETSÞ2FeCl4 [24,25] and β00 salt
[26,27], and iron-based superconductors [28]. Among
the direct experimental probes to identify this state, it
has been suggested to study the Josephson effect [29] and
Andreev bound states [30].

In this Letter, we report that on the phase diagrams of
superconductors featuring the FFLO state should rather
generically appear another state that has the form of surface
pair-density-wave (PDW) superconductivity. We find that
as the Zeeman splitting field or temperature is increased,
superconductivity disappears only in the bulk of the
system, but a sample should transition into a state with a
superconducting surface.
The Ginzburg-Landau description of superconductors

in the presence of Zeeman splitting was derived from
microscopic theory in Ref. [31]. The free-energy func-
tional reads F½ψ � ¼ R

Ω Fddx, where the free-energy
density F is

F ¼ αjψ j2 þ βj∇ψ j2 þ γjψ j4 þ δj∇2ψ j2 þ μjψ j2j∇ψ j2

þ μ

8
½ðψ�Þ2ð∇ψÞ2 þ c:c:� þ νjψ j6; ð1Þ

where ψ is a complex field referred to as the super-
conducting order parameter and c.c. denotes complex
conjugation. The coefficients α, γ, and ν depend on the
applied Zeeman splitting field H and temperature T
accordingly:

α ¼ −πNð0Þ(K1ðH; TÞ − K1ðH0ðTÞ; TÞ)

≈ Nð0ÞH −H0ðTÞ
2πT

Im

�
Ψð1Þ

�
1

2
− i

H0ðTÞ
2πT

��
; ð2Þ

γ ≈
πNð0ÞK3(H0ðTÞ; T)

4
; ð3Þ

ν ≈ −
πNð0ÞK5(H0ðTÞ; T)

8
; ð4Þ

where Nð0Þ is the electron density of states at the Fermi
surface and we have defined the functions
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KnðH;TÞ ¼ 2T
ð2πTÞn
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ðn−1ÞðzÞ�; ð5Þ

where z ¼ 1=2 − iH=2πT and ΨðnÞ is the polygamma
function of order n. The function H0ðTÞ indicates where
α changes sign and is defined implicitly by the equation
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where Tc is the critical temperature above which the normal
state is entered. The remaining coefficients are given as
β ¼ β̂v2Fγ, δ ¼ δ̂v4Fν, and μ ¼ μ̂v2Fν, where vF is the
Fermi velocity and β̂; δ̂; μ̂ are positive constants that depend
on the dimensionality d. In one dimension we have β̂ ¼ 1,
δ̂ ¼ 1=2, and μ̂ ¼ 4, and in twodimensionswehave β̂ ¼ 1=2,
δ̂ ¼ 3=16, and μ̂ ¼ 2. In the parameter regime in which β is
negative, inhomogeneous order parameters may be energeti-
cally favorable. For a derivation of the Ginzburg-Landau
expansion in cold atoms, see Ref. [6].
Typically considered structures of the order parameter

are the so-called Fulde-Ferrell (FF) state ψFF ¼ jψFFjeiqx
and the Larkin-Ovchinnikov (LO) state ψLO¼jψLOjcosqx.
For an infinite system, assuming that the order parameter
vanishes close to the tricritical point, the average free-
energy density of these states can be minimized analytically
by neglecting higher order terms, resulting in the con-
clusion that the LO state is energetically preferred over
the FF state. The second-order phase transition into the
normal state occurs at α ¼ αbulkc ¼ β2=4δ. In general, the
optimal order parameter structure is found by solving
the equation of motion associated with the free-energy
functional (called Ginzburg-Landau equations in this con-
text). This was done analytically in the one-dimensional
case for an infinite sized superconductor, resulting in
elliptic sine solutions [31]. The sinusoidal oscillations
are recovered by approaching the transition into the normal
state. We solve the equation in a superconductor with
boundaries. We consider the case of the real order param-
eter. The equation of motion can be derived through
variational principles. By mapping ψ ↦ ψ þ v in the
free-energy functional, where v is some small arbitrary
perturbation, we find to linear order in v using Eq. (1)

F½ψ þ v� ¼ F½ψ � þ δFbulk þ δFsurface; ð7Þ

where

δFbulk ¼ 2

Z
Ω

�
αψ − β∇2ψ þ 2γψ3 þ δ∇4ψ

þ 5μ

4
½ψð∇ψÞ2 − ψ2∇2ψ � þ 3νψ5

�
vddx ð8Þ

and

δFsurface ¼ 2

Z
∂Ω

���
β þ 5μ

4
ψ2

�
∇ψ − δ∇3ψ

�
v

þ ðδ∇2ψÞ∇v
�
· ndS; ð9Þ

where n is the normal vector to the boundary ∂Ω. By setting
δFbulk ¼ 0, we find the equation of motion, and by setting
δFsurface ¼ 0, we find the two boundary conditions

��
β þ 5μ

4
ψ2

�
∇ψ − δ∇3ψ

�
· n ¼ 0; ð10Þ

δ∇2ψ ¼ 0: ð11Þ

It is convenient to rescale the theory in the regime
where β is negative by defining the dimensionless
quantities ψ̃ ¼ ψ=jψUj, α̃ ¼ α=½αUNð0Þ�, x̃ ¼ q0x=vF,
where jψUj2 ¼ −γ=2ν, αU ¼ γ2=4ν, and q20 ¼ −β=2δ.
The free energy can thus be written as F½ψ � ¼
Nð0ÞvdFαUjψUj2=qd0F̃½ψ̃ �, where F̃½ψ̃ � ¼ R

Ω F̃ddx̃, in
which the rescaled free-energy density is identical to
Eq. (1), where the coefficients have been replaced accord-
ingly, α ↦ α̃; β ↦ β̃, and so on, where γ̃ ¼ −2ν̃ ¼ −2,
β̃ ¼ −2δ̃ ¼ −2β̂2=δ̂, and μ̃ ¼ β̂ μ̂ =δ̂. Consequently, there is
only one free parameter α̃ in the rescaled theory to vary,
which parametrizes changes in both temperature and
Zeeman splitting field.
Having derived boundary conditions, we will now

numerically minimize the free energy for a superconduc-
tor in both one- and two-dimensional domains, while
varying α̃. The associated free energy is calculated in
order to locate phase transitions. Two different numerical
approaches were used. The solutions in Fig. 1 were
obtained using a finite difference scheme and nonlinear
conjugate gradient method, parallelized on a graphical
processing unit. These results were also supported by
calculations using the finite element method within the
FREEFEM++ framework [32].
We find that the free energy remains negative for α̃

larger than the critical value α̃bulkc , where in one dimension
α̃bulkc ¼ 2 and in two dimensions α̃bulkc ¼ 4=3. The origin of
it is the formation of a distinct surface pair-density-wave
superconducting state, which has a superconducting gap on
the boundaries of the system but not in its bulk. The obtained
order parameter structure has the form of a damped
oscillation with an amplitude that vanishes in the bulk but
remains nonzero close to the boundaries. The boundary
states are found in both one- and two-dimensional systems.
The results have been verified by altering the system size,
and it was found that, for a sufficiently large system, the
surface state is independent of system size.
The origin of the appearance of the surface PDW state is

the following: besides the inhomogeneous order parameter,
the bulk FFLO state has inhomogeneous energy density.
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The numerical solutions for one- and two-dimensional
cases are plotted in Fig. 1. As the system approaches
the phase transition from the bulk FFLO to the bulk
normal state, the energy gain from the areas with negative
energy density becomes balanced by the areas with positive
energy density. However, if the system has a boundary,
a solution can be found where the boundary cuts off a
segment of inhomogeneous solutions with positive energy
and has a decaying oscillatory configuration of the order
parameter extending to a certain length scale in the bulk.
That is, a decaying solution near the boundary starting with
a negative energy segment should be stable even when the
system does not support the FFLO state in the bulk. Indeed,
the numerical solutions clearly show that the boundaries are
characterized by negative energy density, as seen in Fig. 1,
resulting in the stability of the surface PDW state for large
α̃. The generality of the argument implies that these surface
superconducting states of nontopological origin should be
present for all states where free-energy density is oscillating
in space. This includes generalizations of FFLO states to
systems with unconventional pairing [34].
The existence of a surface PDW state in a semi-infinite

system Ω ¼ ½0;∞Þ can be proven analytically. To that end,
we use an variational ansatz of the form

ψðxÞ ¼ Δe−kx cosðqxþ ϕÞ; ð12Þ
where the parameters Δ, k, q, and ϕ should be found such
that the free energy is minimized, subject to the boundary
conditions. The surface PDW to normal transition occurs
when the energy is minimal with Δ ¼ 0. When the
transition into the normal state is of second order, it is
sufficient to consider terms proportional to jΔj2 in the free
energy. In addition, the boundary condition in Eq. (10)
takes the simpler form ðβ∇ψ − δ∇3ψÞ · n ¼ 0 close to the
transition into the normal state. Carrying out the mini-
mization analytically, we find that the free energy asso-
ciated with the surface PDW state remains negative until
α ¼ αsurfacec ¼ 4αbulkc . The numerical calculation shows
that the phase transition indeed occurs at this value of α,
which implies that the variational ansatz in Eq. (12)
captures very well the solution for the surface PDW state
in one dimension.
We can draw the phase diagram with respect to H and T

for the one-dimensional system, as shown in Fig. 2. The
inhomogeneous regime is split into two parts: the bulk
FFLO state and the surface PDW state. The regime of the
surface PDW state on the phase diagram is significantly
larger than the bulk FFLO regime.

FIG. 1. Numerically calculated order parameters ψ̃ in one- and two-dimensional system domains for various temperatures or,
equivalently, various Zeeman splitting fields, parametrized by α̃. In the one-dimensional domain, the blue curve is the order parameter
and the red curve is the energy density. One can clearly observe a nontrivial oscillatory pattern of the energy density in the bulk of the
system. The images show the sequence for going from superconducting to normal state by increasing the parameter α̃. In the first panel,
the system is in the FFLO state, and in the last panel the system is close to the normal state. For intermediate α̃, the order parameter first
vanishes in the bulk of the system, and the system enters the surface pair-density-wave state that persists for a much wider range of
parameters than the FFLO state. In calculations of the two-dimensional system, the term 0.5j∇̃ ψ̃ j4 was retained in the Ginzburg-Landau
expansion. For details, see Ref. [33].

PHYSICAL REVIEW LETTERS 122, 165302 (2019)

165302-3



Note that the only role of the external magnetic field is to
create an electronic population imbalance. For example, in
two dimensions the situation corresponds to an in-plane
field and there is no external field perpendicular to the
plane. In the context of cold atoms, it corresponds to the
fermionic population imbalance in the absence of rotation.
Therefore, the physical origin and the structure of the
solution is very different from that of the third upper critical
magnetic field Hc3 [35] that was recently studied in FFLO
systems [13]. The results also have implications for the
problem of FFLO states in mesoscopic systems, where the
literature focuses on commensurateness effects [14,15,36].
Consider the parameter regime where the surface PDW
state exists. By gradually decreasing the system size, the
areas with the PDW state that live on opposite surfaces will
eventually start to overlap with each other. Thus, the above
results imply that, for a range of mesoscopic system sizes of
the order of 1=k in Eq. (12), the most robust solutions will
have a form very different from a periodically oscillating
function, which warrants further investigation.
In conclusion, we have studied superconducting or

superfluid systems supporting the FFLO state. We found
that, at elevated temperatures or for strong splitting
of Fermi surfaces, such systems support a state where
the surface of the sample is a PDW superconductor or
superfluid while the bulk of the system is normal.
Correspondingly, when the temperature is increased, the
system has two phase transitions. Firstly, superconductivity
disappears in the bulk of the system, while surfaces remain

superconducting. Secondly, the system transitions into the
fully normal state only at a higher temperature. In the
considered regime, we found that the surface PDW state is
more robust than the FFLO state and extends to much larger
values of Fermi surface splitting and temperatures.
The effect can be used to experimentally prove the

elusive FFLO state as follows. The main specific heat
feature should be detectable well below the superconduct-
ing phase transition. This is because the contribution to the
specific heat should be dominated by the bulk, where the
gap disappears earlier than on the surface. The transport
measurements should at the same time indicate that the
system retains superconductivity due to the surface PDW
state. Because of superconductivity existing only in a thin
layer in the surface PDW state, another expected exper-
imental signature is a concomitant increase of magnetic
field penetration lengths for fields perpendicular to the
superconducting layer. Very sensitive specific heat mea-
surements should see two features associated with the bulk
and surface phase transitions and yield the phase diagram
shown in Fig. 2. In cold atoms [6], the surface PDW state
can be directly observed for experiments realizing sharp
potential walls [37,38]. Finally, the results have implica-
tions for the models of color superconductivity in the
neutron stars cores, at the interface between nuclear
and quark matter, which is widely believed to be of the
FFLO type [9].
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