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The impact of a spherical projectile on an evened-out granular bed generates a uniform ejecta of material
and a crater with a raised circular rim. Recently, Sabuwala et al. [Phys. Rev. Lett. 120, 264501 (2018)]
found that the uniform blanket of ejecta changes to a set of radial streaks when a spherical body impacts on
an undulated granular surface, being a plausible explanation to the enigmatic ray systems on planetary
bodies. Here, we show that ray systems can also be generated by the impact of nonspherical projectiles on a
flat granular surface. This is a reasonable explanation considering that meteorites are rarely spherical.
Moreover, by impacting bodies of different geometries, we show that the crater size follows the same
power-law scaling with the impact energy found for spherical projectiles, and the crater rim becomes
circular as the impact energy is increased regardless of the projectile shape, which helps to understand why
most impact craters in nature are rounded.
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Craters observed on Earth and other celestial bodies have
different origins including meteorite impacts, volcanic
eruptions, explosions, and subsidence [1,2]. Low-energy
laboratory experiments with granular materials mimicking
such mechanisms have been of great relevance to disclose
different cratering features [3–12]. Impact experiments are
usually carried out by dropping spherical projectiles, solid
[3–7] or granular [8], against a flattened granular bed. The
impact ejects a uniform curtain of material [13] and leaves a
circular depression (bowl shaped or with central uplifts).
Crater morphologies obtained by this method are found to
be very similar to those observed on planetary surfaces
[3,14–16]; however, one feature remained a mystery for
decades [17]: ejecta rays, radial streaks of fine ejecta
thrown out from the impact site. These ejections are called
ray systems, and two examples are those surrounding the
lunar craters Copernicus and Tycho. A great advance in
understanding the origin of ray systems was reported very
recently [18], when ejecta rays were produced by impacting
a sphere on a surface with undulations. The number of rays
was found to be directly proportional to the projectile
diameter and inversely proportional to the undulation
wavelength.
Surface undulations appear to be a required condition for

the formation of ray systems, revealing the importance of
considering the impacted surface topography in cratering
studies. Another aspect rarely considered is that meteorites
are not perfect spheres. In this Letter, we report that ejecta
rays can also be generated when a flat granular bed is
impacted by nonspherical projectiles. Balls with protuber-
ances, amorphous meteoritelike projectiles, and other
bodies with different cross section geometries (square,
triangular, circular, and star shaped) were dropped from
a given height h (0.1 m ≤ h ≤ 5.1 m) into a bed of 120 kg

of sand (density ρs ¼ 2.66 g=cm3 and grain size dg in the
range 150–250 μm), see details in [19]. It was found that
rays emerge from the curved zones of the projectile surface
that make the ejected material converge and be redirected in
a single direction. An analysis based on geometry and
momentum considerations was used to explain the number
of ejected rays and their orientation. The temporal evolu-
tion of the ejecta and its dimensions as a function of the
impact energy were also investigated. On the other hand, by
measuring circularity, we show that the crater rim becomes
circular as the impact energy increases regardless of the
projectile shape, and the crater diameter follows the well-
known 1=4-power law of the impact energy obtained for
perfect spheres. Our results indicate that a crater depression
brings scarce information about the original meteorite
shape, but more insight can be deducted from the distri-
bution of the ejected material.
Ray systems.—Let us first analyze the ejecta patterns

produced by impacts of projectiles with a different number
of protuberances Np. Each projectile consisted of a
modeling clay ball of radius R ¼ 22.5 mm with 2 to 16
steel hemispherical protrusions of radius r ¼ 3.95 mm
equally separated along one ball circumference. The
projectiles were dropped from h ¼ 185 cm and filmed at
2000 fps. Snapshots in Fig. 1(a) show the impact of a
projectile with 12 protrusions generates 12 rays. This
pattern clearly contrasts with the continuous corona pro-
duced by the ball without protuberances shown in Fig. 1(b);
see also videos in the Supplemental Material [19]. At first
glance, since the number of rays Nr is equal to Np, one
could suppose that one ray is ejected by each protuberance.
Nevertheless, experiments with Np ¼ 2, 4, 8 produce
Nr ¼ 4, 8, 16, respectively; see Figs. 1(c)–1(e). Indeed,
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each protrusion generates two rays. For the case Np ¼ 8,
the rays are very close to each other. For larger values of
NP, two rays converge into a single one, and that is
the reason why Nr ¼ NP for 12 and 16 protuberances in
Figs. 1(a) and 1(f), respectively. We also performed experi-
ments withNp ¼ 22 protuberances distributed on the entire
sphere surface; see Fig. 1(g). As can be seen, Nr ¼ 12,
which coincides with the number of protuberances distrib-
uted along the circumference parallel to the bed at the
impact. Thus, the shape of this cross section is what
determines the final ejecta distribution.
In order to understand what defines the number of rays

and how they are formed, let us consider the diagram
shown in Fig. 2(a). The fact that a spherical projectile forms
a corona that spreads radially [as in Fig. 1(b)] is a clear
indication that the material is always ejected with a
horizontal velocity component vh pointing towards the
direction n̂ normal to the projectile surface. For the case of
a sphere with protuberances, some of the material ejected
by the lumps provides momentum in the tangential direc-
tion t̂ when it collides with the radial ejection produced by
the sphere [see Fig. 2(a)]. This generates two rays deviated
at an angle θ from n̂ at the two points where each lump
intersects the sphere and the bed surface, which explains
the relation Nr ¼ 2Np. However, the deviation θ from n̂
implies that if the separation S between two adjacent lumps
is small the rays emerging between them can converge
forming a single one, see Fig. 2(b); in such cases Nr ¼ Np.
We figured out that this happens when S is of the order of
the protuberance size 2r. Since the protrusions are equally
separated, the arch length S ≈ ð2πR=NpÞ − 2r. Equating
this relation with 2r, one estimates that adjacent rays start to
merge when Np ¼ N�

p ≈ ðπR=2rÞ. For R ¼ 22.5 mm and
r ¼ 3.95 mm, one finds N�

P ∼ 9. Below this value
Nr ¼ 2Np, and for Np > N�

p one gets Nr ¼ Np, which
coincides with our observations. The above condition was

confirmed for different aspect ratios r=R. Additionally,
assuming that the sphere provides to the grains a normal
momentum p⃗n ¼ ρlRvhn̂ and the lump a tangential
momentum p⃗t ¼ ρlrvht̂, where ρl is the mass of grains
per unit length ejected radially from each body, one obtains
that θ ∼ ðπ=2Þ − arctanðR=rÞ. This relation satisfies the
following required conditions: if r ≪ R, arctanðR=rÞ →
ðπ=2Þ and θ ≈ 0, which means that the grains are
ejected radially ignoring the presence of the protuberance.
If r ¼ R, arctanðR=rÞ ¼ π=4 and θ ≈ 45°. This condition
can be applied, for instance, to the case of two

FIG. 1. (a) Snapshots showing ejecta rays produced by the impact of a projectile with Np ¼ 12 protuberances. (b) For a smooth
projectile, i.e., Np ¼ 0, the number of rays Nr ¼ 0. (c)–(f) For Np ¼ 2, 4, 8 one gets Nr ¼ 4, 8, 16, respectively; however, for Np ¼ 16,
Nr ¼ 16 since adjacent rays converge into one. (g) A projectile with 22 protuberances produces 12 rays, equal to the number of
protuberances along its circumference. See complete sequences in [19].

(a)

(c)

(e) (f)

(d)

(b)

FIG. 2. Sketches of ray formation: (a) each lump of radius r
embedded on a spherical projectile of radius R generates two
rays. (b) If the lumps are close, the individual rays converge into a
larger one. (c) Equal perpendicular walls generate an ejection at
45°. (d) Snapshots showing rays expelled at 45° during the impact
of a star-shaped projectile. (e) Deviation θ of a ray from the radial
direction n̂. (f) (90°–θ) vs r=R.
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perpendicular identical walls shown in Fig. 2(c). Since each
wall contributes with the same momentum, the ray must be
ejected at 45°. Snapshots in Fig. 2(d) showing the impact of
a star-shaped projectile confirm our expectations (see video
in the Supplemental Material [19]). We measured θ vs r=R
from the ray’s patterns as it is indicated in Fig. 2(e). The
results reported in Fig. 2(f) (black points) are well described
by the dependence on arctanðR=rÞ given above (red line).
Let us now quantify the ejecta dimensions in function of

the impact height. Figure 3(a) depicts how we measured
the maximum ray length Lrays, the maximum ray height
Hrays, the ejecta curtain radius Rcurt, and the ejecta angle α
when the curtain reaches itsmaximumheightHcurt. Using the
projectile shown in Fig. 1(a) (m ¼ 103.6 g, R ¼ 22.5 mm,
and r ¼ 3.95 mm) dropped from h ¼ 26–512 cm (i.e.,
kinetic energy at the impact KE0 ¼ 0.4–5.2 J), we found
thatα ≈ 47°� 2° independently ofKE0, similar to the results
found using spheres in [13,22]. Figure 3(b) shows that the
ejecta expands at early times as Rcurt − R ∼ t0.62, where t is
the time from themoment at which the ejecta starts to appear;
however, after t ¼ 0.1 s, the ejecta curtain grows almost at
constant speed. These two regimes were also observed in
[13]. Regarding Hrays and Hcurt, Fig. 3(c) shows that both
obey a power-law Hmax ∝ h0.73, which remarkably leads us
to Hrays=Hcurt ≈ 1.6 for all values of KE0.
Themost difficult parameter to quantifywasLrays due to the

dispersion of grains during the flight. The horizontal range for

grains ejected with velocity v and angle α in a parabolic flight
is given by the ballistic equation ℜ ¼ v2 sinð2αÞ=g. Since
ðv sin αÞ2 ¼ 2gHmax and for the rays Hmax ≈ 0.17h0.73, one
finds Lrays ∼ℜ ¼ 4Hmax= tan α ≈ 0.64h0.73. This expression
was plotted in Fig. 3(d) (−Þ and comparedwith direct top view
measurements (circle) only for h < 200 cm due to exper-
imental setup limitations. To surpass this restriction, we
tracked the tips of individual rays at early times of the ejection
for h ¼ 26–512 cm (see details in [19]). By fitting the
trajectories with equations of motion, we estimated Lrays vs
h neglecting and including air drag, see Fig. 3(d). Note that the
ballistic equation and the estimated valueswith air drag follow
a very similar trend. This should not surprise us since the
inclusion of the power-law dependence ofHmax in the ballistic
equation takes into account the energy dissipated during the
impact and also the air drag during the ascending flight.
According to Refs. [13,24], the velocity of an ejected grain is
appreciably reduced by air drag over a distance Ldrag ¼
4dgρs=6ρair during which the grain encounters its own mass
(where ρair is the air density). In our case, Ldrag ≥ 22 cm for
the finest grains (dg ≈ 150 μm). Thus, the air resistance
cannot be neglected for long rays. Moreover, ray fragmenta-
tion into granular clusters [25,26] was observed during long
flights. The clusters at the tip and the fastest grains fall apart
from the continuous jet and cannot be easily visualized from
the videos; for that reason, we measured smaller lengths than
the real ones.
Ray systems generated by meteoritelike projectiles.—

The previous results were obtained using spherical projec-
tiles with protuberances symmetrically distributed. None-
theless, real meteorites are irregular in shape and shallow
pits (regmaglypts) may be seen on some parts of the
surface. Inspired by this, we performed experiments using
amorphous projectiles with marked curvatures and pits.
A projectile with shallow pits does not produce rays
[Fig. 4(a)]. In contrast, an irregular projectile generates
rays emerging from the most concave curvatures of its
surface [Fig. 4(b) and video in the Supplemental Material

(a)

(c) (d)

(b)

FIG. 3. (a) Top and lateral views of the ejecta indicating the
measured parameters Lrays, α, Rcurt, Hrays, and Hcurt. (b) Log-log
plot of (Rcurt − R) vs time t. (c) Log-log plot of Hmax for the rays
and the curtain as a function of the drop height h. In both cases
Hmax ∝ h0.73 (solid lines). (d) Lrays vs h measured from top
videos (circle) and estimated considering (diamond)/neglecting
(rectangle) air drag. The dashed line corresponds to Lrays ¼
ð0.64� 0.01Þh0.73�0.01 derived from the power-law dependence
of Hrays. Power laws have been widely used to describe the ejecta
dynamics for low-speed and hypervelocity impacts [13,22,23].

(a) (b)

(c)

FIG. 4. (a) Uniform ejection produced by a ball with shallow
pits. (b) Rays generated by the impact of an irregular projectile
with concave curvatures of its surface (the arrows indicate the
expected direction of the main rays). (c) Crater with circular rim
and two rays produced by the irregular projectile.
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[19] ]. From this observation, we speculate that, possibly,
some planetary ray systems were generated by the impact
of meteorites with marked concave curvatures. Further-
more, some clues about the meteorite shape can be derived
from the final distribution of rays.
Crater morphology.—So far, we have focused our

discussion on ray systems. Another remarkable aspect
noticed in Fig. 4(c) is that the final crater has a circular
rim regardless of the irregular shape of the impactor.
Figures 5(a)–5(c) show pictures of craters produced by
projectiles of different cross section geometries (square,
triangular, and circular). For h ¼ 10 cm, the final crater

preserves some information about the projectile shape.
Nevertheless, as the impact height increases, the crater
becomes circular. Something similar happens with the
projectile of 12 protuberances and the star-shaped projectile
[Figs. 5(d) and 5(e)]. In order to quantify the crater
roundness, we measured the circularity ϵ of the crater rims
using the software IMAGEJ [27]. Figure 5(g) shows ϵ vs h
for the three cases shown in Figs. 5(a)–5(c). For the circular
projectile ϵ ¼ 1, as expected. For the square and triangular
cross sections ϵðh ¼ 0Þ ¼ ϵ0 ≈ 0.82 and 0.65, respectively,
and these values grow rapidly to ϵ ≈ 1 as h increases. This
growth is well fitted by the exponential saturation ϵ ¼
1 − ð1 − ϵ0Þe−h=h� (dashed lines), where h� is a fitting
parameter dependent on the projectile geometry. For
h > 200 cm, one cannot guess the possible shape of the
impactor from the crater morphology since for all cases the
crater rim is circular (ϵ ¼ 1). A similar phenomenon was
observed with craters produced by the collapse of pres-
surized cavities in a granular bed [9]: for deep cavities, the
resulting crater becomes circular independently of the
initial cavity shape due to material rearrangement by
avalanches during the collapse. Therefore, the crater round-
ness in our case can be associated with the fact that the
excavation energy augments when the impact height
increases, creating deeper cavities and enabling the rear-
rangement of material.
Finally, we obtained the crater profiles using a laser line as

shown in Fig. 5(f). Examples of these profiles shown in
Fig. 5(h) for the three projectile geometries reveal craters of a
very similar size. From the profiles, we obtained the crater
diameter D and its depth dc as a function of h. The log-log
plot in Fig. 5(i) indicates that D follows a power-law
dependence of the form D ¼ Chp. The best fit of the
experimental data gives the following for each case:
Dsquare ¼ ð2.60� 0.11Þh0.254�0.008 (black line),Dtriangular ¼
ð2.84� 0.09Þh0.248�0.006 (red line), and Dcircular ¼ ð2.59�
0.18Þh0.252�0.013 (green line). Therefore, the well-known
1=4-power dependence on energy for spherical projectiles
[3,4,8] is also valid for nonspherical impactors. We also
found for the three geometries a nearly constant crater aspect
ratio D=dc ≈ 8 [Fig. 5(j)] close to the value reported in
Ref. [3] for impacts of spheres. Although analyzing the final
depth ZF reached by the projectile is out of the aims of this
Letter, our data in the Supplemental Material [19] indicate a
scaling close to ZF ∝ h1=2 instead of the 1=3-power
dependence reported in Ref. [4], which could be associated
with differences in energy scales. This aspect will be studied
in detail in a forthcoming investigation.
Conclusions.—We have shown for the first time that ray

systems can be produced by nonspherical projectiles
impacting on a flat granular bed. Our results, together
with those reported recently in Ref. [18], make clear that
ray systems appear if the interface between the projectile
contour and the granular surface has a shape that provides
nonradial horizontal momentum to the grains and makes

FIG. 5. (a)–(c) Pictures of craters produced by projectiles of
(a) square, (b) triangular, and (c) circular cross sections impacting
from different drop heights h. In the three cases m ¼ 76.6 g. (d),
(e) Different views of craters produced by (d) a projectile with 12
protrusions and (e) a star-shaped projectile released from
h ¼ 400 cm (the ejected rays are also visible). (f) Laser profil-
ometry used to determine the crater profiles. A similar technique
was used in Refs. [6,11]. (g) Crater circularity ϵ as a function of h
for the three projectile geometries. (h) Example of X, Z profiles
obtained from the laser profilometry. D and dc are the crater
diameter and depth, respectively, and Zf is the final penetration
depth of the projectile. (i) Log-log plot of D vs h for the three
geometries shown in (a)–(c); D ∼ h1=4 in all cases. (j) Crater
aspect ratio D=dc vs h for the three geometries [same color-
symbol code from (g)–(j)].
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them converge in a fine ejecta. Therefore, considering the
projectile silhouette and the topography of the impacted
bed is fundamental to describe the ray systems geometry.
On the other hand, by studying the crater morphology, we
found that the crater dimensions follow the same power-law
dependence on the impact energy found for spherical
projectiles. Even more remarkable is that the crater contour
becomes circular independently of the projectile shape as
the impact energy increases, and this helps to understand
why most impact craters observed in nature have circular
rims regardless the irregular shape of meteorites.
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