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Precise experimental setups for detection of variation of fundamental constants, scalar dark matter, or
gravitational waves, such as laser interferometers, optical cavities, and resonant-mass detectors, are directly
linked to measuring changes in material size. Here we present calculated and experiment-derived estimates
for both α and μ dependence of lattice constants and bond lengths of selected solid-state materials and
diatomic molecules that are needed for interpretation of such experiments.
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Several unification theories and standard model (SM)
extensions predict variation of fundamental constants
(VFCs) in space and in time [1,2]. It has also been
hypothesized that interaction of ordinary matter with a
massive scalar dark matter (DM) field can produce slow
temporal drifts or oscillations in the values of the funda-
mental constants [3–5], whereas topological defects in the
dark matter field can produce transient VFC [6,7]. The first
transient DM detection limits were recently discussed by
Wcisło et al. [8]. A possible route to observe such drifts or
transient effects is through systematic measurements of
transitions in atomic and molecular spectra that are sensi-
tive to the variation of dimensionless fundamental quan-
tities such as the fine structure constant α ¼ e2=ℏc or the
proton-to-electron mass ratio μ ¼ mp=me [9–14].
Laser interferometers now reach precision far exceeding

that of any spectroscopic apparatus and thus offer a new
promising direction in the search for VFC [15]. This line of
research is directly connected to the dependence of material
size on VFC, through the use of resonant-mass detectors
[16–19] or cryogenic sapphire and silicon oscillators
[20–24]. In order to interpret such experiments, knowledge
of dependence of the crystal size on the fundamental
constants is needed.
Theoretical investigations of size dependence of mole-

cules and bulk materials on fundamental constants are
scarce. Some studies were carried out in the context of
relativistic effects and corresponding changes in periodic
trends, where the dependence on the fine structure constant
is considered [25,26]. More recently, King et al. inves-
tigated the dependence of structure and bonding in small
molecules on both α and μ, with the objective of finding the
hypothetical (α, μ) regimes that support biochemistry and

therefore life on our planet [27]. Braxmaier et al. [28]
performed an investigation of the variation of the resonance
frequencies of monolithic crystal cavities with possible
variation of fundamental constants through the dependence
of the refractive index of the medium on α and μ. To the
best of our knowledge, no prior investigations of direct size
dependence of bulk materials on fundamental constants
have been carried out.
In nonrelativistic physics, the size of molecules and

solids is proportional to the Bohr radius aB. This depend-
ence cancels out in the ratio of the sizes. The individual
dependence of different compounds on the fine structure
constant is determined by the difference in the relativistic
effects, which are proportional to Z2α2 (and higher powers
of Z2α2). Thus, considering the ratio of the resonance
frequencies in two optical cavities made from different
materials, in the nonrelativistic approximation there is no
dependence on α, but such dependence appears due to
relativistic corrections.
The situation is different when we compare the reso-

nance frequency of an optical cavity with an atomic optical
frequency. For example, one measures the ratio of the Sr
atomic clock frequency and the resonance frequency in a
silicone cavity of length L [8]. Here, the ratio is propor-
tional to α already in the nonrelativistic approximation
because the resonator frequency depends on the speed of
light c. Indeed, the resonator frequency is ωr ¼ ck∼
c=λ ∼ c=L ∼ c=aB, atomic frequency ωa ∼ e2=ℏaB; there-
fore, ωa=ωr ∼ e2=ℏc ¼ α. In this case, relativistic correc-
tions produce additional α dependence.
Another dimensionless ratio that affects the properties of

different compounds is the ratio of nuclear and electron
masses; the nuclear mass is approximately proportional to
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the proton mass, and thus we consider the proton-to-
electron mass ratio μ.
In this Letter, we present a systematic investigation of the

variation of crystal lattice parameters (ae and ce) and
molecular bond lengths (Re) due to variation of the fine
structure constant and the proton-to-electron mass ratio for
selected solid state and molecular systems.
For our solid-state study, we have selected several

elemental and compound crystals. The choice of Cu, Si,
Al, Nb, and Al2O3 was motivated by highly precise
experimental setups measuring effects of physics beyond
the SM: silicon and sapphire oscillators [20–24] and
resonance of Cu, Al, and Nb bars [16–18]. In order to
illustrate periodic trends, we have also chosen to study the
group 11 and 14 elemental solids.
However, we initially investigated the dependence of the

equilibrium interatomic distance Re of diatomic molecules
on α and μ. This gave us the opportunity to test the
methodology used for the investigation of solids. For
molecules, we have the option of using high-level ab initio
methodology such as relativistic coupled cluster (CC)
theory as a benchmark to our density functional theory
(DFT) results. For this part of the study, we chose dimers of
group 11 and group 14 elements.
The results of our investigation of diatomic molecules are

collected in Table I (see the Supplemental Material [29] for
computational details [30–46]). Both CC and DFT calcu-
lated equilibrium bond lengths Re agree with experiment.
Themean absolute symmetric percentage error (MASPE) of
CC results with respect to experiment is 0.5%.
Correspondingly for DFT, the MASPE is 1.6%.
Comparing the two methods to one another, we obtain
the MASPE value of 1.9%; i.e., DFT recovers the more
rigorous CC results very well. In case of the derivative
property, the α variation of bond lengths, there are no
experimental results. However, comparing the DFT to CC
results gives the MASPE of 22%, which we use to evaluate
the uncertainty on the predicted DFT α variation of lattice
parameters presented below.

Generally, the magnitude of the α dependence on Re
increases with increasing atomic number Z, as one expects.
In group 11 (Cu, Ag, Au), the effect follows the well-
known ∼Z2 dependence as is the case with many other
properties [53]. For group 14 elements (C, Si, Ge, Sn, Pb),
we observe a nonmonotonous trend; however, for the
heavier elements we still notice an increasing α-sensitivity.
This is not surprising, as we note the changes in the ground-
state electronic structure in the group 14 element sequence.
The main source of the mass dependence of molecular

bond lengths comes from the vibrational motion. Assuming
that the rotational constant and bond length relationship is
B ∼ R−2, and thevibrationallyaveraged rotational constant is

B0 ¼ Be −
αe
2
; ð1Þ

where Be is the equilibrium rotational constant and αe is the
vibrational-rotational coupling constant, we can express the
vibrationally averaged bond length R0 as

R0 ¼ Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ αe

2Be − αe

r
: ð2Þ

Following the scaling of equilibrium constants with reduced
mass M, Be ∼M−1, and αe ∼M−3

2 [54], we arrive at the
fractional variation of R0 with varying μ

dR0

R0

¼ −
αe

4ð2Be − αeÞ
dμ
μ
: ð3Þ

Thissimplebutusefulestimatecanbeevaluatedusing readily
available experimental spectroscopic constants [47–52].
ResultingvaluesareshowninTable I.Becauseof thenegative
sign in Eq. (3) and the fact that αe ≪ Be in all realistic
diatomics, these are always negative. The magnitude of the
effect is relatively uniform in all investigated systems.
Following the Pekeris formula [55] derived for the Morse
potential

TABLE I. Experimental and calculated bond lengths Re and their corresponding calculated fractional variation with varying fine-
structure constant α and proton-to-electron mass ratio μ.

Mol. State Re [Å] ðdRe=ReÞ=ðdα=αÞ ðdR0=R0Þ=ðdμ=μÞ ðdRe=ReÞ=ðdμ=μÞ
Exp.a CC DFT CC DFT Eq. (3) DBOC-CC

Cu2 1Σþ
g 2.2197(1) 2.216 2.215 −3.19 × 10−2 −3.18 × 10−2 −7.15 × 10−4 −7.31 × 10−6

Ag2 1Σþ
g 2.5303(2) 2.522 2.565 −7.66 × 10−2 −8.21 × 10−2 −5.34 × 10−4 −3.38 × 10−6

Au2 1Σþ
g 2.4719(1) 2.471 2.501 −3.15 × 10−1 −3.37 × 10−1 −2.95 × 10−4 9.16 × 10−7

C2
1Σþ

g 1.24253(2) 1.243 1.254 −2.65 × 10−4 −3.88 × 10−4 −1.17 × 10−3 −6.94 × 10−6

Si2 3Σ−
g 2.246 2.255 2.309 8.66 × 10−5 1.94 × 10−4 −7.08 × 10−4 −6.63 × 10−6

Ge2 3Σ−
g 2.3667(6)b 2.361 2.430 −6.74 × 10−3 −6.48 × 10−3 −4.37 × 10−4 −4.46 × 10−6

Sn2 0þg 2.746(1) 2.722 2.814 −2.24 × 10−2 −2.17 × 10−2 −3.25 × 10−4 −3.82 × 10−6

Pb2 0þg 2.9271(2) 2.869 2.960 −1.05 × 10−1 −1.58 × 10−1 −3.37 × 10−4 3.32 × 10−7

aExperimental values from Refs. [47–52].
bFor Ge2, only R0 was available experimentally. This was used together with the experimental B0 and αe value of 2.84 × 10−4 cm−1

from our CC calculations to calculate Re.
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αe ¼
6B2

e

ωe

� ffiffiffiffiffiffiffiffiffiffi
ωexe
Be

r
− 1

�
; ð4Þ

we can expect larger fractional variation of R0 with μ for
shallow or strongly anharmonic interatomic potentials.
A small contribution to bond length mass dependence

arises from the nuclear kinetic energy terms which are
neglected in the Born-Oppenheimer approximation (BOA).
Within the BOA, the nuclear motion is separated from the
electronic motion, and coupling terms are in practice
completely neglected. As a consequence, equilibrium bond
lengths are independent of the mass and this near mass
invariance is widely used in the experimental determination
of bond lengths from rotational spectra of different iso-
topologues of the same molecule. Taking the nuclear
kinetic energy term into account the Re is in fact weakly
linearly dependent on the inverse reduced mass of the
molecule [56]. This directly translates into the μ-depend-
ence Re ∼ μ−1.
To estimate the non-BOA contribution to μ sensitivity of

bond lengths, we included the perturbative diagonal Born-
Oppenheimer corrections (DBOC) in optimizations of the
investigated molecules [29]. Results for the μ sensitivity of
the fractional variation of Re are collected in Table I.
Generally, the size of this effect is comparable in all
investigated diatomics. This contribution is at least 2 orders
of magnitude smaller than the fractional variation of R0 in

all cases, and therefore it can be safely neglected when
considering the μ sensitivity of vibrationally averaged bond
lengths. One can expect this conclusion to be even more
justified in solids, where the atoms are further confined by
the lattice. We note Lutz and Hutson investigated the role of
DBOC in other aspects of diatomic spectroscopy and
ultracold physics [57].
We estimate our μ-sensitivity results to be accurate

within �5%, considering error bars from experimental
determination of spectroscopic parameters and errors intro-
duced by neglecting the higher-order spectroscopic con-
stants (γe, ϵe, etc.) and the non-BOA effects. The error in αe
determination dominates the resulting compound error of
the μ sensitivity.
The investigation of the α and μ sensitivity of lattice

parameters of solids was conceptually analogous to the
initial study on diatomics [29]. The results of our DFT
solid-state calculations are collected in Table II. The
calculated equilibrium lattice parameters are in a very
good agreement with experimental values, giving the
MASPE value of 1.3%, which is slightly smaller than in
the case of diatomic molecules. Relying on the error
analysis of diatomics, we thus expect the calculated α
dependence of lattice constants to be accurate within
�20%. Figure 1 demonstrates that the lattice parameters
exhibit close to ideal α2 scaling; i.e., their dependence on x
is almost perfectly linear across a wide range of α values (in

TABLE II. Experimental and calculated lattice constants ae and ce (ce shown in the second line for the respective structure) and their
corresponding calculated fractional variation with varying fine-structure constant α and proton-to-electron mass ratio μ.

Solid Structure Spc. group ae, ce [Å] ðdae=aeÞ=ðdα=αÞ ðda0=a0Þ=ðdμ=μÞ
Exp. (RT)a Exp. (0K)b Calc.

Cu Fcc Fm3̄m 3.6146(2) 3.6029(2) 3.634 −1.97 × 10−2 −1.12 × 10−3

Ag Fcc Fm3̄m 4.0857(2) 4.0681(2) 4.160 −4.97 × 10−2 −8.32 × 10−4

Au Fcc Fm3̄m 4.0782(2) 4.0646(2) 4.059 −1.61 × 10−1 −4.33 × 10−4

C Dia. Fd3̄m 3.5669(2) 3.5667(2) 3.576 −2.39 × 10−4 −2.22 × 10−3

Si Dia. Fd3̄m 5.4306(2) 5.4259(2) 5.479 −2.17 × 10−4 −8.56 × 10−4

Ge Dia. Fd3̄m 5.6574(2) 5.6487(2) 5.779 6.21 × 10−4 −6.02 × 10−4

Sn Dia. (α) Fd3̄m 6.4892(2) 6.4752(2) 6.678 −4.46 × 10−4 −3.29 × 10−4

Tet. (β) I41=amd 5.8318(2) 5.8048(2) 5.956 7.61 × 10−3 −7.09 × 10−4

3.1818(2) 3.1671(2) 3.251 1.16 × 10−3

Pb Fcc Fm3̄m 4.9502(2) 4.9142(2) 4.715 −2.94 × 10−1 −5.65 × 10−4

Al Fcc Fm3̄m 4.0496(2) 4.0321(2) 4.042 3.65 × 10−4 −2.11 × 10−3

Nb Bcc Im3̄m 3.3004(2) 3.2955(2) 3.317 −2.35 × 10−3 −3.74 × 10−4

Ti Hcp P63=mmc 2.9506(2) 2.9461(2) 2.935 −1.18 × 10−3 −7.06 × 10−4

4.6835(2) 4.6764(2) 4.685 −3.47 × 10−3

Al2O3 Hex. R3̄c 4.7540(5) 4.7507(5) 4.825 −4.06 × 10−4 −2.06 × 10−3

12.9820(6) 12.9731(6) 13.142 −4.88 × 10−4

SiC 3C (β) F4̄3m 4.3596(1) 4.3582(1) 4.392 −3.54 × 10−4 −1.56 × 10−3

6H (α) P63mc 3.0806(1) 3.0795(1) 3.105 −3.73 × 10−4 −1.47 × 10−3

15.1173(1) 15.1121(1) 15.225 −3.41 × 10−4

WC Hex. P6̄m2 2.9059(1) 2.9051(1) 2.923 −4.39 × 10−2 −1.26 × 10−3

2.8377(1) 2.8369(1) 2.857 −3.19 × 10−2

aExperimental values from Refs. [58–61].
bFinite-temperature experimental lattice parameters extrapolated to 0K [62] using experimental data from Refs. [60,61,63–71].
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the present study,
ffiffiffiffiffiffiffi
0.5

p
α0 ≤ α ≤

ffiffiffiffiffiffiffi
1.5

p
α0). We note that the

values of fractional variation ðdae=aeÞ=ðdα=αÞ are rela-
tively small (≪ 1).
We once more observe the general increase of the α

sensitivity with Z. In the case of group 11 elements, this
increase follows the ∼Z2 scaling (Fig. 2). For group 14, the
overall effect is highly nonmonotonic. This is also true if
we only compare crystal structures with the same space
group Fd3̄m (C, Si, Ge, α-Sn), because the bonding
character changes significantly along this sequence from
strongly covalent to semimetallic [72]. Another interesting
feature is that the α sensitivity of diamond, the lightest
element in the group, is larger than expected from the
simple scaling law, and larger than that of its heavier
homologue, Si. Comparing the two allotropes of tin, we
observe opposite sign of the size dependence on α.
Furthermore, the absolute α sensitivity of β-Sn is higher
than that of α-Sn. This can be ascribed to relativistic effects
more strongly influencing the distorted-close-pack struc-
ture of β-Sn, which has higher s character compared to fully
sp3-hybridized diamond structure of α-Sn [73]. Relativistic
effects are strongest in s orbitals with the highest density in
the vicinity of the nucleus. Population analysis gives
5s∶1.54e, 5p∶2.34e for α-Sn and 5s∶1.73e, 5p∶2.14e
for β-Sn, supporting this interpretation. For the noncubic

crystal structures (corundum, β-tin, α-SiC, WC), we see
different α dependence of the lattice constants ae and ce,
especially in the case of β-Sn, where the α sensitivity of ae
is roughly 6× larger than that of ce. Thus, the character of
bonding has a very strong influence on the dependence of
the crystal structure parameters on α, and in the general
case scaling laws are not sufficient to estimate the size of
the effect.
A general practice for removing the dependence on the

unit system is to use the ratio of two observed quantities
instead of measuring a property of a single system. In this
case, we can either compare two different materials
(preferably with opposite signs of their α dependencies,
to enhance the sensitivity) or even compare the α sensitivity
in two different directions of a single material (for noncubic
crystals). Additionally, in interferometry, the observed
quantity is the phase shift, which is unitless in itself,
and one type of measurement would suffice for topological
DM detection.
The mass dependence of lattice parameters is due to the

vibrational motion of the crystal lattice. It was extensively
studied theoretically and experimentally using isotopic
substitution. For monoatomic solids at zero temperature
(where the mass dependence is largest [74]), London
derived an expression for fractional variation of molar
volume V with varying isotopic molar mass M [75]

MdV
VdM

¼ −
9

16

γκ

V
RΘD; ð5Þ

where γ is the thermodynamic Grüneisen parameter, κ the
compressibility, R the gas constant, and ΘD the Debye
temperature. This translates to a final expression for the μ
variation of the lattice constant

da0
a0

=
dμ
μ

¼ −
3

16

γ

BV
kBΘD; ð6Þ

where B is the isothermal bulk modulus, V is atomic
volume, and kB is Boltzmann constant. Because all
numbers entering this formula are positive, the resulting
values are negative for all realistic crystals. Note, the bulk
modulus and hence also the μ variation are assumed to be
isotropic.
Results obtained using expression (6) and available

experimental parameters [60,61,63–71] are listed in
Table II. Considering the errors in experimental determi-
nation of solid-state parameters, we estimate the overall
presented μ-sensitivity values to be accurate within
�20%. Our μ sensitivity estimates compare well with
the results derived from available experimental measure-
ments on diamond, silicon, and germanium (−1.8 × 10−3,
−7.8 × 10−4, and −5.5 × 10−4, respectively) [76–78],
as well as with results derived from theoretical path-
integral Monte Carlo simulations (C: −1.94 × 10−3; Si:
−1.13 × 10−3; Ge: −6.55 × 10−4; β-SiC: −1.37 × 10−3)

FIG. 1. Dependence of the lattice constants ae, ce (full and open
circles, respectively) of bulk Ti on the relativistic parameter x.
Slopes are shown to scale.

FIG. 2. Z scaling of ðdae=aeÞ=ðdα=αÞ for group 11 elements
(note the log-log scale). Dashed line shows the ideal Z2 fit.
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[79–82]. The MASPE value of our estimates with respect
to the referenced results is 15%, supporting our error
analysis. Out of the investigated materials, diamond, Al,
and Al2O3 (i.e., corundum or sapphire) have the highest μ
sensitivity. All results lie in a relatively small range
spanning 1 order of magnitude. Within this range, how-
ever, there are no clear systematic trends.
Precision interferometry can now provide relative sensi-

tivity of parameters such as δL=L to VFC beyond that of
any other physical apparatus. Combining this with the
calculated fractional variation of crystal sizes and the use of
silicon, sapphire or other single crystal oscillators or optical
cavities offer a new and independent path to testing VFC
and search for scalar low-mass dark matter beyond the most
stringent limits [15]. For a progress in this field, accurate
values for α and μ dependence of lattice constants of solid-
state materials are required, which we provide in this Letter.
To illustrate the expected experimental sensitivity to the

variation of the fundamental constants, we present an
example. Assume that δα=α ¼ 10−17 yr−1 (this value is
close to the present best limit on the variation of α [83]). We
may compare variation of relative sizes L of two materials
with different sensitivity to α variation, for example, Au
and Si with KαðAuÞ ¼ −0.161 and KαðSiÞ ¼ −0.000217,
where the sensitivity coefficients K ¼ ðdae=aeÞ=ðdα=αÞ
are presented in Table II. The relative variation of the
ratio of the sizes is then ½δðLAu=LSiÞ=ðLAu=LSiÞ� ¼
½KαðAuÞ − KαðSiÞ�ðδα=αÞ ¼ −1.6 × 10−18.
This is comparable to the precision of the recent optical

cavity experiments [84–86], where the crystal-size varia-
tion directly affects the measurement. The highest reported
precision for an optical cavity is 5.8ð3Þ × 10−19 after an
hour of averaging [87]. Longer averaging times may lead to
an even higher precision. Therefore, the results presented
here support the proposed method as an alternative avenue
to test the VFC. Performing a wider search and identifying
suitable materials with higher sensitivity coefficients in the
future would further improve the prospects of the proposed
method.
Currently, the highest instrumental precision is achieved

in the large-scale interferometer setups (LIGO, VIRGO),
reaching 10−22 levels [88]. However, because here the
effect of the crystal-size variation is not as direct as for the
optical cavities, application of the present method would
require some modification of the detection scheme.
As explained in the introduction, the sensitivity coef-

ficient for comparison of a resonator frequency and an
atomic clock frequency in the nonrelativistic limit is given
by the difference Kresonator − Kclock ¼ 1; i.e., the effect is
equal to δα=α ¼ 10−17. To include the relativistic correc-
tions, we should add to the sensitivity coefficients of the
resonator the values presented in Table II and for the clock
the values presented in Ref. [9]. For the Si optical cavity
and Sr clock, the relativistic corrections are not significant;
however, for clocks based on heavy elements (such as Hgþ

and Ybþ), relativistic effects increase the sensitivity to
δα=α several times.
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