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Spontaneous symmetry breaking (SSB) in statistical physics is a macroscopic collective phenomenon.
For the paradigmatic Q-state Potts model it means a transition from the disordered color-symmetric phase
to an ordered phase in which one color dominates. Existing mean field theories imply that SSB in the
microcanonical statistical ensemble (with energy being the control parameter) should be a continuous
process. Here we study microcanonical SSB on the random-graph Potts model and discover that the
entropy is a kinked function of energy. This kink leads to a discontinuous phase transition at certain energy
density value, characterized by a jump in the density of the dominant color and a jump in the
microcanonical temperature. This discontinuous SSB in random graphs is confirmed by microcanonical
Monte Carlo simulations, and it is also observed in bond-diluted finite-size lattice systems.
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Spontaneous symmetry breaking (SSB) is a fundamental
concept of physics and is tightly linked to the origin of
mass in particle physics, the emergence of superconduc-
tivity in condensed-matter system, and the ferromagnetic
phase transition in statistical mechanics, to name just a few
eminent examples [1]. In statistical physics a theoretical
paradigm for SSB is the Potts model, a simple two-body
interaction graphical system in which each vertex has Q
discrete color states [2–4]. The equilibrium SSB transition
of the Potts model in the canonical ensemble, where inverse
temperature β is the control parameter, has been extensively
investigated (see Refs. [5–12] for some of the recent
results). Driven by energy-entropy competitions, this tran-
sition is a discontinuous phenomenon when Q is suffi-
ciently large, with the density ρ1 of the dominant color
jumps from 1=Q to a much larger value at the critical
inverse temperature βc. To compensate for the extensive
loss of entropy, such a discontinuous transition is always
accompanied by a discontinuous decrease of the system’s
energy density u [3,4].
When the system is isolated and cannot exchange

energy with the environment (the microcanonincal ensem-
ble [13–16]), it is generally believed that the SSB transition
will occur gradually, with the dominant color density ρ1
deviating from 1=Q continuously at certain critical energy
density umic. Indeed if the microscopic entropy density sðuÞ
is a C1-continuous function of energy density u [i.e., both
sðuÞ and its first derivative are continuous], there is no
reason to expect a discontinuity of the order parameter ρ1.
The C1 continuity of sðuÞ can be easily verified for the
mean field Potts model on a complete graph [17]. For finite-
dimensional lattices the phase separation mechanism
(the nucleation and expansion of droplets [18–21]) will

guarantee a C1-continuous entropy profile in the thermo-
dynamic limit. For random graph systems one would
naïvely expect umic to be an inflection point of sðuÞ
[22], which ensures C1 continuity.
In this Letter we investigate the microcanonical Potts

model on random graphs using the Bethe-Peierls mean field
theory and discover that the entropy density sðuÞ is actually
not C1 continuous but is kinked at u ¼ umic for any Q ≥ 3
(Fig. 1). Consequently, there is a discontinuous micro-
canonical phase transition at umic, with a jump in the
dominant density ρ1 and a drop in the microcanonical
inverse temperature. This SSB transition is driven com-
pletely by entropy competitions between the microcanon-
ical polarized (MP) phase and the disordered symmetric
(DS) phase, and at umic the MP phase is hotter than the DS
phase. These theoretical predictions for random graphs are
verified by microcanonical Monte Carlo simulations. The
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FIG. 1. Schematic drawing of kinked entropy density sðuÞ.
As the energy density u of the Q-state Potts model decreases to
umic, sðuÞ changes from concave to convex and its slope drops
from β1 to β2. The system is color-symmetric at umic þ ε (ε → 0)
with a lower microcanonical temperature 1=β1, but at umic − ε it
has a highly dominant color and a higher microcanonical
temperature 1=β2.

PHYSICAL REVIEW LETTERS 122, 160601 (2019)

0031-9007=19=122(16)=160601(5) 160601-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.122.160601&domain=pdf&date_stamp=2019-04-24
https://doi.org/10.1103/PhysRevLett.122.160601
https://doi.org/10.1103/PhysRevLett.122.160601
https://doi.org/10.1103/PhysRevLett.122.160601
https://doi.org/10.1103/PhysRevLett.122.160601


discontinuous SSB transition is also observed in three- and
higher-dimensional bond-diluted lattices, but only for
system sizes not too large [17]. The phenomenon of kinked
entropy may persist in other multiple-state spin glass
systems or combinatorial optimization problems [23].
Our work also adds new insight on the debate about
ensemble inequivalence [24–27].
Mean field theory.—Consider a graph G formed by N

vertices and M edges. Each vertex i has a discrete color
ci ∈ f1; 2;…; Qg and an edge ði; jÞ between vertices i and
j has a ferromagnetic interaction energy Eijðci; cjÞ ¼ −δcjci ,
where δ

cj
ci ¼ 1ð0Þ if ci ¼ cj (ci ≠ cj). The total energy of a

color configuration c≡ ðc1; c2;…; cNÞ is the summed edge
energies, EðcÞ ¼ P

ði;jÞ∈GEijðci; cjÞ, which is symmetric
with respect to color permutations. The partition function
ZðβÞ at a given inverse temperature β is

ZðβÞ≡X

c

e−βEðcÞ ¼
X

c

Y

ði;jÞ∈G
½1þ ðeβ − 1Þδcjci �: ð1Þ

We now review the Bethe-Peierls theory for this model
[23,28]. For simplicity we describe the theoretical equa-
tions for random regular (RR) graphs, which are maximally
random except that every vertex has exactly K attached
edges. (The mean field theory for general graphs can easily
be derived following the cavity method of statistical
physics [23,29] or through loop expansion of the partition
function [30,31].) This theory is exact for tree graphs, and
because random graphs are locally treelike (loop lengths
diverge logarithmically with N) and there is no intrinsic
frustration in the edge interactions, we expect it to be exact
for RR graphs as well.
Without loss of generality we assume c ¼ 1 to be the

dominant (most abundant) color. To compute the marginal
probability ρ1 of this color state for a randomly chosen
vertex i we first delete i and all its attached edges from the
graph. Because short loops are rather rare in the graph, the
K nearest neighbors of i will now be far separated in the
perturbed cavity graph and consequently their color states
will be independent. We denote by q (≥1=Q) the proba-
bility of such a neighboring vertex j to be in state cj ¼ 1 in
the perturbed graph, and assume that vertex j has equal
probability ð1 − qÞ=ðQ − 1Þ to be in any of the other color
states. When vertex i and its K edges are added back to the
graph, its probability of being in state ci ¼ 1 is then

ρ1 ¼
�

1þ ðQ − 1Þ
�
1þ ðeβ − 1Þ 1−q

Q−1

1þ ðeβ − 1Þq
�

K
�
−1
: ð2Þ

This quantity ρ1 is also the dominant color density of the
RR graph. A similar expression for the cavity probability q
of the neighboring vertex j can be written down (j has
K − 1 edges in the cavity graph):

q¼BðqÞ≡
�

1þðQ−1Þ
�
1þðeβ−1Þ 1−qQ−1

1þðeβ−1Þq
�

K−1
�
−1
: ð3Þ

This self-consistent expression is referred to as a belief-
propagation (BP) equation [32].
The free energy density f ≡ −ð1=NβÞ lnZðβÞ of the

system can be computed by first summarizing the individ-
ual contributions of all the vertices, and then subtracting the
individual contributions of all the edges (because each edge
contributes to the free energies of two vertices) [23,29–31].
At a BP fixed point the explicit expression of f is

f ¼ −
1

β
ln
�

½1þ ðeβ − 1Þq�K

þ ðQ − 1Þ
�

1þ ðeβ − 1Þ 1 − q
Q − 1

�
K
�

þ K
2β

ln

�

1þ ðeβ − 1Þ
�

q2 þ ð1 − qÞ2
Q − 1

��

: ð4Þ

One can verify that ð∂f=∂qÞ ¼ 0 when q ¼ BðqÞ. The
mean energy density u is obtained from Eq. (4) as

u≡ ∂ðβfÞ
∂β ¼ −

K
2

eβðq2 þ ð1−qÞ2
Q−1 Þ

1þ ðeβ − 1Þðq2 þ ð1−qÞ2
Q−1 Þ

: ð5Þ

The entropy density s of the system is then determined by
s ¼ βðu − fÞ [28].
The BP equation (3) always has a trivial fixed point q ¼

1=Q which corresponds to the disordered symmetric phase
with all the colors being equally abundant [17]. This fixed
point becomes unstable with respect to the iteration qtþ1 ←
BðqtÞ when β > βDS ≡ ln½1þQ=ðK − 2Þ�. For K ≥ 3 and
Q ≥ 3, Eq. (3) has a stable fixed point with q and ρ1 strictly
larger than 1=Q at β > βCP, which corresponds to the
canonical polarized phase of broken color symmetry. Here
βCP (<βDS) is the lowest inverse temperature at which the
CP phase becomes possible. The CP and DS phases have
equal free energy density at a critical inverse temperature
βc ∈ ðβCP; βDSÞ, so an equilibrium phase transition occurs
at βc, with a sudden drop in energy density u [17].
Microcanonical SSB.—For β ∈ ðβCP; βDSÞ the BP equa-

tion (3) has another fixed point which is unstable with
respect to qtþ1 ← BðqtÞ [17]. This fixed point is usually
neglected because its free energy is higher than those of the
DS and CP phases [Fig. 2(a)]. But we find that it reveals a
discontinuous microcanonical phase transition between the
DS phase and a new microcanonical polarized phase of the
configuration space.
Plotting the predicted thermodynamic values of the MP

fixed point [Fig. 2(b)], we observe that while q and ρ1 are
monotonic functions of β as anticipated, the energy density
u and entropy density s both are nonmonotonic. This
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surprising feature of u and s leads to the two-branched
entropy profile shown in the upper-left inset of Fig. 2(c).
These two entropy branches merge and stop at umax, which
is the maximal achievable energy density of the MP phase.
The entropy of the lower MP branch is slightly lower than
that of the DS phase so this branch has no physical
significance. On the other hand, the entropy of the upper
MP branch exceeds that of the DS phase as u decreases
below certain critical value umic which is strictly lower than
umax, indicating the system will jump from the color-
symmetric phase to a color-symmetry-broken MP phase
which is stable only in the microcanonical ensemble. The
dominant color density ρ1 at umic is strictly higher than
1=Q, so the spontaneous breaking of color symmetry is a
discontinuous emerging phenomenon. Notice that at u
slightly below umic the entropy density of the MP phase
is higher than that of the DS phase.
Because the entropy densities of the DS and MP phases

are equal at u ¼ umic but have different slopes [Fig. 2(c)],

the system’s entropy density function sðuÞ is not C1

continuous but is kinked at umic [17]. Since the micro-
canonical inverse temperature is equal to the first derivative
of sðuÞ, β≡ ½dsðuÞ=du� [28], there will be a sudden drop of
the microcanonical β and an associated sudden drop of the
free energy density f (¼u − βs) as the system changes from
the DS to the MP phase at umic. In other words, at umic the
partially ordered MP phase is hotter than the disordered
symmetric phase and has a lower free energy density.
This peculiar feature of sðuÞ is qualitatively different from
the recently discussed entropy inflection phenomenon,
which is associated with the vanishing of the second-order
derivative of sðuÞ [22].
We have checked that as long as Q ≥ 3, the discontinu-

ous SSB phenomenon holds for all the RR graph ensembles
of degree K ≥ 3. As demonstrated in Table I, at each fixed
value of Q the ρ1 and β gaps at umic both decrease with
degree K (and vanish gradually as K → ∞ [17]). The
discontinuous microcanonical phase transition will also
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FIG. 2. Potts model on regular random graphs, K ¼ 4 and Q ¼ 6. (a) Free-energy densities fðβÞ for the disordered symmetric (DS,
solid line), the canonical polarized (CP, dashed line), and the microcanonical polarized (MP, dotted line) fixed points of the BP equation.
The DS solution is stable at inverse temperature β < βDS ¼ 1.386, the CP solution exists for β ≥ βCP ¼ 1.147, and the DS-CP phase
transition occurs at βc ¼ 1.174 with the energy density u dropping from −0.786 to −1.523. (b) Energy density uðβÞ, entropy density
sðβÞ, fixed-point value qðβÞ, and density ρ1ðβÞ of the dominant color (inset), for the MP fixed point. The maximal achievable MP energy
density is umax ¼ −0.861. (c),(d) Entropy density s and dominant color density ρ1 vs energy density u for the DS (solid line), MP
(dashed line), and CP (dotted line) fixed points. Upper-left and lower-right insets of (c) show an enlarged view of the MP entropy profile
and the difference Δs between the MP and DS entropy density values (Δs ¼ 0 at energy density umic ¼ −0.864). Symbols in (d) are
microcanonical Monte Carlo simulation results obtained on a single RR graph (N ¼ 65536) and several bond-diluted eight-dimensional
periodic hypercubic lattices of side length L ¼ 4, 5, 6 (D8,N ¼ L8), degreeK ¼ 4 andQ ¼ 6. The inset of (d) is an enlarged view of the
transition region, and the phase transition point umic for RR graphs is marked by the vertical dashed line, at which ρ1 jumps
from 1=6 to 0.293.
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occur in an extended Potts model with additional kinetic
energies [17].
Monte Carlo simulations.—We carry out microcanonical

Monte Carlo (MC) simulations to check the theoretical
predictions. There are many discussions on microcanonical
MC methods [13,15,16,33–35], and here we employ the
simple demon method [33] to draw a set of independent
configurations which are located slightly below a pre-
scribed objective energy level Eo. Starting from an initial
configuration c of energy E ≤ Eo, an elementary MC step
unfolds as follows: (1) pick a vertex i uniformly at random
and change its color ci to a uniformly random new value c0i
(≠ci); (2) accept this color change if the energy E0 of the
resulting new configuration satisfies E0 ≤ Eo, otherwise
keep the old color ci; (3) increase the evolution time t by a
tiny amount 1=N (one unit time therefore corresponds to N
single-flip trials). This MC dynamics obeys detailed
balance, so the sampled color configurations all have the
same statistical weight. The simulation results obtained on
a large RR graph instance are shown in Fig. 2(d) (K ¼ 4,
Q ¼ 6). We indeed observe a discontinuous transition at
the predicted critical energy density umic. The numerical
results on the dominant color density ρ1 also agree
perfectly with theory. The predicted inverse temperature
gap Δβ is also quantitatively confirmed by computer
simulations [17].
We also consider bond-diluted D-dimensional hyper-

cubic lattices of side length L with periodic boundary
conditions (N ¼ LD). By keeping only K bonds in a
maximally random manner for every vertex (see [17] for
construction details), the shortest loops passing through the
vertices rapidly increase their lengths as K decreases andD
increases, and the diluted lattice is locally resembling a

random graph [36]. A discontinuous SSB transition is
observed in the MC dynamics for such bond-diluted lattice
systems at high dimensions [e.g.,D ¼ 8, Fig. 2(d)] and also
at the physical dimension D ¼ 3 [17]. However, unlike the
case of truly random graphs, we expect that the SSB
transition in these lattice systems will become continuous
in the thermodynamic limit [17], because phase separation
is deemed to occur as the system size L becomes suffi-
ciently large [18–21].
Conclusion.—In summary, we predicted and confirmed a

discontinuous microcanonical SSB phase transition in the
Q-state Potts model on random graphs. Such a discontinu-
ous transition was also observed in bond-diluted finite-size
lattice systems (even down to three dimensions [17]). In the
future we need to investigate the geometric property of the
configurations in the MP phase (e.g., the possibility of a
percolating cluster of connected same-color vertices) [20],
and possible latent structures prior to the microcanonical
transition [37,38], and to study systematically the micro-
canonical SSB transition in finite-dimensional finite-size
systems and the associated inequivalence between the
microcanonical and the canonical ensembles [24–27].
The discovered property of kinked entropy may be a
general feature of random graphical models with a canoni-
cal discontinuous phase transition, and it may have
important computational consequences in optimization
tasks [23].
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