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Measurement-based quantum computation, an alternative paradigm for quantum information process-
ing, uses simple measurements on qubits prepared in cluster states, a class of multiparty entangled states
with useful properties. Here we propose and analyze a scheme that takes advantage of the interplay between
spin-orbit coupling and superexchange interactions, in the presence of a coherent drive, to deterministically
generate macroscopic arrays of cluster states in fermionic alkaline earth atoms trapped in three dimensional
(3D) optical lattices. The scheme dynamically generates cluster states without the need of engineered
transport, and is robust in the presence of holes, a typical imperfection in cold atom Mott insulators. The
protocol is of particular relevance for the new generation of 3D optical lattice clocks with coherence times
>10 s, 2 orders of magnitude larger than the cluster state generation time. We propose the use of collective
measurements and time reversal of the Hamiltonian to benchmark the underlying Ising model dynamics
and the generated many-body correlations.
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Entanglement, the characteristic trait of quantum
mechanics, is a vital resource for quantum information
processing [1], quantum communications [2], and
enhanced metrology [3]. These applications often require
multipartite entangled states, which can be difficult to
create and intrinsically fragile to noise and decoherence.
Nevertheless, there exists a special class of multipartite
entangled states called cluster states, which can be robust
to adverse effects on a subset of their logical qubits [4–6].
This intrinsic robustness, and the state entanglement
properties, make cluster states in two (or three) dimensions
a resource for one-way quantum computing, where a
computation is realized by a sequence of single-qubit
measurements on the initial cluster state. Besides their
appeal in quantum computation, cluster states have been a
playground for the study of many-body and statistical
physics [6], graph theory [7], topological codes [8], and
mathematical logic [9].
Cluster state generation has been reported in proof-of-

principle experiments using frequency down-conversion
techniques [10–12], photonic qubits [13,14], continuous-
variable modes of squeezed light [15,16], semiconductor
quantum dots [17], and trapped ions [18]. In addition,
coherent entangling-disentangling evolution via controlled
collisions was reported in cold atom Mott insulators [19],
an experiment that stimulated theoretical work toward
cluster state generation [20–24]. However, a scalable,
deterministic source of cluster states needs yet to be
realized.

Here we propose a scheme for preparing macroscopic
cluster state arrays (∼103 qubits) in one, two, and three
dimensions. Our protocol uses a combination of super-
exchange and spin-orbit coupling to engineer nearest-
neighbor Ising interactions. In this implementation, cluster
states naturally emerge during time evolution without the
need of controlled collisions in spin dependent lattices [20],
while maintaining robustness to imperfect filling. Although
full tomography is not yet feasible in macroscopic systems,
we propose the use of many-body echoes to probe the
cluster state quality. Although our protocol is general and
applicable to ultracold atomic systems interacting via
contact [25] or engineered interactions (e.g., via an optical
cavity) [26,27], it is particularly relevant for current 3D
atomic lattice clocks [28–30] operated with fermionic
alkaline earth atoms (AEs). These atoms offer untapped
opportunities for precision metrology [31] and quantum
information [30,32,33], because they possess a unique
atomic structure featuring an ultranarrow clock transition
with > 100 s lifetimes, and a fully controllable, magnetic
field insensitive hyperfine manifold. The demonstrated
capability to generate spin-orbit coupling (SOC) in AEs
[34–38], together with near-term experimentally accessible
single-site addressability and control of SOC via accordion
lattices [39–41], may enable the first realization of a large-
scale one-way quantum computer in ultracold atoms using
our protocol.
Model.—ConsiderN neutral fermionic atoms prepared in

two long-lived internal states, denoted by g, e (e.g., optical
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clock states or hyperfine nuclear spin states), trapped in a
deep cubic optical lattice of L sites. We operate in the
ultracold regime where only the lowest Bloch band is
populated. The internal levels are continuously driven by a
resonant laser (via optical or Raman transitions) with wave

vector k⃗C and Rabi frequency Ωeik⃗C·r⃗ at lattice position r⃗.
The drive imprints a site-dependent phase ϕj ¼ k⃗C · r⃗j,
which transfers momentum to the atoms and generates
spin-orbit coupling [34]. Here, r⃗j ¼ ðm; n; lÞa, with a
the lattice spacing and m, n, l integers. By going to a
dressed basis σ ∈ f↑;↓g defined by the rotated states
j↑i ¼ ðjei − ijgiÞ= ffiffiffi

2
p

and j↓i ¼ ðjei þ ijgiÞ= ffiffiffi
2

p
, (see

the Supplemental Material, Sec. A [42]), the
Hamiltonian is described by the following Fermi-
Hubbard model (ℏ ¼ 1)

Ĥ ¼ −J
X

hj;ki;σ
ðĉ†jσ ĉkσ þ H:c:Þ þU

X

j

n̂j↑n̂j↓

þ Ω
2

X

j

eiπjðn̂j↑ − n̂j↓Þ: ð1Þ

Here, ĉjσ annihilates an atom of spin σ on site j,
n̂jσ ¼ ĉ†jσ ĉjσ, and hj; ki indices nearest-neighbors (no
double counting). J is the hopping amplitude between
sites, and U > 0 is the Hubbard repulsion [see Fig. 1(a)].
While the lattice is 3D, we can restrict this system to 1D or
2D by raising the confinement along the transverse direc-
tion(s). We have assumed that the phase between neighbor-
ing sites is ϕj − ϕk ¼ π, corresponding to ak⃗C · α̂ ¼ π for
every unit vector α̂ ∈ fx̂; ŷ; ẑg along which tunneling is
permitted, so that the sign of the Rabi drive alter-
nates between neighbouring sites. This corresponds to
inducing an effective gauge field with relative flux π,
if one visualizes the spin as an additional synthetic
dimension [43].

At half filling N ¼ L, Ω=J ≫ 1 and U=J ≫ 1, a Mott
insulator is formed with suppression of doubly occupied
sites. The strong drive favors staggered spin order
and competes or cooperates with virtual second-order
tunneling processes (superexchange). Instead of typical
antiferromagnetic interactions [44,45], SOC transforms the
Hamiltonian into a dominant nearest-neighbor Ising inter-
action. The underlying mechanism is depicted in Fig. 1(b).
If two neighboring sites are in the single-particle ground
state j↓↑i, double occupancy after a tunneling event will
cost an energy penalty þΩ due to the alternating Rabi
drive, and an additional penalty þU due to Hubbard
repulsion, creating a large energy gap Ωþ U. If the
particles are instead in the excited state j↑↓i, virtual
tunneling costs −Ωþ U which can be made near resonant
for Ω ≃ U. The states j↑↑i and j↓↓i cannot tunnel due to
Pauli exclusion. The effective superexchange Hamiltonian
for our system (see the Supplemental Material, Sec. B [42])

becomes Ĥse ¼ Ĥð1Þ
se þ Ĥð2Þ

se with

Ĥð1Þ
se ≡ 4J2U

Ω2 −U2

X

hj;ki
ŜzjŜ

z
k þ

�
ΩþD

4J2Ω
Ω2 −U2

�X

j

Ŝzj;

ð2Þ

where Ŝαj are spin-1=2 operators, and D is the dimension-
ality (i.e., D ¼ 2 for 2D tunneling). There is an additional

interaction Ĥð2Þ
se ≡ ð2J2=UÞPhj;kiðŜþj Ŝþk þ H:c:Þ, but its

contribution to unitary evolution is rendered negligible
in our parameter regime by the SOC, which forces the

states affected by Ĥð2Þ
se to pick up a high-frequency phase

∼e−2iΩt from the drive, making their off-diagonal terms in
the unitary proportional to ∼J2=ðΩUÞ and thus negligible
(see the Supplemental Material, Sec. C [42]). The super-
exchange mapping is exact in the limit of U=J → ∞, and
jΩ −Uj=J → ∞ to avoid higher-order processes (see the
Supplemental Material, Sec. D [42] for benchmarking).
Cluster states.— A cluster state jψci is a many-body

quantum resource state, characterized by localizable
entanglement. It can be generated by applying a controlled
phase gate on every pair of neighboring sites hj; ki:
exp½−iðŜzjŜzk þ 1

2
Ŝzj þ 1

2
ŜzkÞπ�j ←ijj ←ik where j ←ij ¼

ðj↑ij − j↓ijÞ=
ffiffiffi
2

p
[see Fig. 2(a)]. Logic gates can be

implemented by consecutive measurements on the cluster
state, permitting a platform for quantum computation that
needs no entanglement generation besides the initial state.
A 2D cluster state is sufficient for universal computation
[6], whereas a 3D state also has significant fault tolerance
on the order of 25% error [46]. We propose to use the Ising
interaction in Eq. (2) applied to an initial state jψð0Þi ¼
j←;←; � � � ←i to realize a cluster state. We bring the drive
close to resonance, Ω ≃U, making the ŜzjŜ

z
jþ1 term large

enough to access cluster states on experimentally viable

FIG. 1. (a) Schematic of the Fermi-Hubbard dynamics in an
optical lattice, characterized by a nearest-neighbor tunneling
energy J, and an onsite repulsion U. A resonant laser with Rabi

frequency Ωeik⃗C·r⃗ interrogates the internal levels while trans-
ferring momentum to the atoms (SOC). (b) Superexchange
mechanism. The lowest(highest)-energy single-particle levels
are in a staggered spin configuration due to the SOC. One type
of virtual tunneling is suppressed by an energy costU þΩ, while
another is near resonant with cost U −Ω (for U ≃ Ω). Zero-
energy states play no role due to Pauli exclusion prohibiting
tunneling.
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timescales, as discussed in the last part of this Letter. The
single-particle terms in the Hamiltonian can be removed
with a spin echo: we evolve to a halfway time, make a
π-pulse Π̂ ¼ e−iπŜ

x
and evolve for the second half, undoing

any on site rotations [see Fig. 2(b)]:

jψðtÞizz ¼ e−iĤset=2Π̂e−iĤset=2jψð0Þi ≈ e−iĤzztjψð0Þi;

Ĥzz ¼ Jzz
X

hj;ki
ŜzjŜ

z
k; Jzz ¼

4J2U
Ω2 − U2

: ð3Þ

Evolving under the Ising interaction to the cluster time,
tc ¼ π=Jzz implements the controlled phase gates needed.
At half filling, the protocol prepares an almost perfect

cluster state (up to single-particle rotations) for appropriate
parameters. Figures 2(c) and 2(d) compare the protocol
to the ideal Ising model with fidelity and collective
Ŝx ¼ P

jŜ
x
j observables.

A cluster state jψci can be equivalently defined as an
eigenstate of stabilizer operators [5]. These are local
multibody operators that quantify the localizable entangle-
ment in the state

hKij ≡ 22Dþ1hψ jŜxj
Y

hj;ki
Ŝzkjψi ¼ 1 for jψi ¼ jψ ci: ð4Þ

The closeness of these stabilizer expectation values, which
we call cluster correlations hereafter, to jhKijj ¼ 1 in a
given region of the lattice is a metric of the cluster state
quality there [5]. There is no significant distinction between
hKij ¼ �1, because the two can be interchanged with an Ŝz

rotation, and we take absolute values when all stabilizers

are negative. In Fig. 2(e), we show stabilizers for the
superexchange model in 2D at half filling. This acts as a
better metric than global state fidelity, because the localized
nature of cluster state entanglement still permits compu-
tation using a region of the lattice if some other, uncon-
nected region is corrupted.
Imperfect Mott insulator.— A major source of error in

experiments is the presence of vacancies in the initial state,
which can move and disrupt the correlations. In our
implementation they are kept localized by the staggered
energy structure imposed by the drive [cf. Fig. 1(b)].
Tunneling into an adjacent empty site costs �Ω and is
thus inhibited. Although an empty site still destroys the
entanglement with its neighbors, other nonadjacent sites
can maintain cluster correlations.
Figure 3(a) compares cluster correlations for a half-

filling sample and a doped array for a 1D system (tunneling
allowed along one direction). Sites away from the hole
maintain high stabilizer values. A similar result is seen in
Fig. 3(b) for 2D. Given the complexity of solving full
Fermi-Hubbard dynamics in this case, we instead use an
effective spin-1 model to account for holes (see the
Supplemental Material, Sec. E [42]). Although that model
overestimates the correlations at sites affected by the
vacancies [see green plot in Fig. 3(a)], overall it shows
that away from them the correlations persist.
In addition to the above benchmarks, we also compute

robustness of stabilizers to increasing system size and
external confinement (see the Supplemental Material,
Sec. F [42]).
Collective cluster measurements and OTOCs.—Probing

stabilizers directly requires measurements of multibody

(a) (b)

(c) (d) (e)

FIG. 2. (a) Cluster state schematic. Controlled phase gates are applied to nearest-neighbor pairs. The resulting correlations are local
stabilizer operators (here in 1D). (b) Protocol for generating cluster states. The system is evolved with a spin echo to simulate an Ising
interaction. (c) Fidelity F ¼ jhψðtÞjψðtÞizzj2 between an Ising Hamiltonian evolution and our protocol from Eq. (3), using the
superexchange model. Parameters are J=ð2πÞ ¼ 28 Hz for U=J ¼ 56, and J=ð2πÞ ¼ 66 Hz for U=J ¼ 18. System size is L ¼ 4 × 4

with 2D tunneling. (d) Time evolution of hŜxi for our protocol (lines) and ideal Ising model (dots). Cluster times tc ¼ π=Jzz are indicated
in matching color. Note that tc is shorter for the red line because it has a higher J, and thus higher Jzz ∼ J2. (e) 2D cluster correlations at
half filling with L ¼ 4 × 4, U=J ¼ 56, Ω=J ¼ 66.

PHYSICAL REVIEW LETTERS 122, 160402 (2019)

160402-3



correlations with single-site resolution. Although the res-
olution is required for one-way quantum information
processing, at least for initial test-bed experiments, it is
possible to partially bypass this requirement by using
inherent properties in the Ising model combined with
global probes. Notice that

hKijðtÞ¼22Dþ1hψð0ÞjeiĤzzt

�
Ŝxj
Y

hj;ki
Ŝzk

�
e−iĤzztjψð0Þi;

¼2ð−1ÞDhψð0ÞjeiĤzztðe−iĤzztc ŜxjeiĤzztcÞe−iĤzztjψð0Þi;
ð5Þ

implying that the many-body measurement can be replaced
with a local one by evolving to twice the cluster time
instead (see the Supplemental Material, Sec. G [42]).
Measuring over a region ŜxR ¼ P

j∈RŜ
x
j yields mean values

of cluster correlations in R, which offers a metric for cluster
state quality there. This does not contain information about
the entire state, but is sufficient to gauge fidelity of
computation using the region R. Although the sign of
the Ising interaction inside the brackets of Eq. (5) does not
matter, the time reversal of the Hamiltonian can be
implemented, thanks to the tunability of the interaction,
providing additional benchmarking capability and a more
objective comparison.
After evolving to the cluster time, we quench the drive,

Ω →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2U2 − Ω2

p
, causing the interaction to flip its sign,

Ĥzz → −Ĥzz [the Ising model is realized with the spin echo
of Eq. (3)]. If the mapping between the Fermi-Hubbard and
superexchange were exact, then at t ¼ tc we implement a
unitary reversal and measure ideal cluster correlations.
Doping or nonideal implementation of the Ising would
yield lower values. Figure 4 compares the dynamics of
cluster correlations with exact many-body measurements

and the collective measurement hŜxiðtÞ (R ¼ N). With half
filling, we see near-perfect agreement. For a doped array,
the collective measurements overestimate the correlations,
but still maintain the overall trend.
The goal of the above protocol is to gauge the cluster

state quality. To actually implement quantum computation
after cluster states are generated requires a nontrivial
measurement sequence [47,48]. Because the focus of this
work is cluster state generation instead of one-way quan-
tum computation, we leave the details of the latter to
future work.
As a side remark, the ability to generate time-reversed

evolution allows us to measure out-of-time-ordered corre-
lations (OTOCs) [49–51]. An OTOC is defined as
CWVðtÞ ¼ hŴðtÞ†V̂†ŴðtÞV̂i, where Ŵ; V̂ are commuting
operators and ŴðtÞ ¼ eiĤtŴe−iĤt. OTOCs quantify how
quantum information is scrambled over many-body degrees
of freedom after a quench [49]. OTOCs have also been
considered a proxy of quantum chaos [52]. In our system,
OTOCs can be measured if we choose V̂ ¼ Ŝx, because
hŴðtÞ†V̂†ŴðtÞV̂i¼−LhŴðtÞ†V̂†ŴðtÞi=2, and Ŵ ¼ e−iθŜ

x

is a collective rotation for some angle θ, which is
straightforward to realize experimentally. Different
OTOCs can be measured by using different rotation axes
or angles.
Experimental parameters and implementations.— One

of the most promising systems to implement our proposal
is the 3D optical lattice clock, operated with fermionic
Strontium-87 atoms in a cubic lattice at the “magic-wave-
length” a ≈ 406 nm [53]. Along the directions where we
want tunneling, we assume lattice confinement of V0=Er ≈
15–20 (Er the recoil energy), to obtain J ∼ 10 × 2πHz, and
much deeper confinement V0=Er ≳ 100 along other direc-
tions. For a scattering length a−eg ≈ 69a0 [30] (a0 the Bohr
radius), the onsite interaction strength is U=J ∼ 100.
The Rabi frequency needs to satisfy both Ω≃U and
jU−Ωj=J≫1 to allow fast cluster state generation
tc ∼ 0.1 s compared to the current experimental coherence

FIG. 3. (a) Cluster correlations for an L ¼ 10 system with 1D
tunneling at half filling (full), and with one vacancy initially on
site m ¼ 1 (doped). Orange plots are computed with Fermi-
Hubbard. The green plots quantify how we would have over-
estimated the correlations if we had instead used an approximate
spin-1 model (see the Supplemental Material, Sec. E [42]).
Parameters are J=ð2πÞ ¼ 22 Hz, U=J ¼ 115, Ω=J ¼ 140.
(b) Cluster correlations for a 2D system L ¼ 4 × 4 with one
vacancy at ðm; nÞ ¼ ð1; 1Þ. The spin-1 is used due to the
numerical complexity of the Fermi-Hubbard. Although it over-
estimates the correlations, qualitatively the hole remains local-
ized. Parameters are J=ð2πÞ ¼ 28 Hz, U=J ¼ 56, Ω=J ¼ 66.

FIG. 4. Dynamics of average cluster correlations for a 1D
tunneling lattice of L ¼ 8, at half filling (blue) and one vacancy
on site j ¼ 1 (red), using Fermi-Hubbard. Solid lines generate the
cluster state directly and measure the local correlators. We then
average across all sites. Dotted lines use the time-reversal
protocol of Eq. (5), relying upon only collective measurements
of hŜxi. Parameters are J=ð2πÞ¼22Hz,U=J ¼ 115,Ω=J ¼ 140.
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time of ∼10 s [30] (limited by light scattering), and to
guarantee the validity of the superexchange model.
The spin degree of freedom can be encoded in the two

long-lived 1S0ðgÞ − 3P0ðeÞ clock states in a nuclear-spin
polarized gas. Pauli exclusion prevents undesirable e-e
inelastic collisions in the lowest band.
The achievable SOC phase depends on jk⃗Cj ¼ 2π=λC,

with λC the transition wavelength. For the 1S0 − 3P0 states
in the magic-wavelength lattice, the λC ≈ 698 nm clock
laser naturally imparts the required SOC. To achieve the
necessary π phase in 1D, one needs to suppress tunneling
along the ŷ, ẑ lattice directions, enable tunneling along x̂
and incline the laser so that ak⃗C · x̂ ¼ π. For 2D, one
enables tunneling along x̂, ŷ, points the laser in that plane at
45°, and likewise inclines until the projection along both
equals π. Although the current magic wavelength lattice
requires a slightly larger jk⃗Cj for 2D, it can be adjusted
through the use of accordion lattices to increase a [41], or
by using a separate laser for each axis.
Alternatively, one can use two nuclear-spin states in

the 1S0 ground state manifold and Raman transitions to
generate the desired SOC, with the one-photon detuning
of the Raman lasers set sufficiently large to enable a
long coherence time [54]. In particular, the 1S0 − 1P1 at
λC ≈ 461 nm is appealing because it naturally realizes a
SOC phase difference of ≈π in each direction when the
laser is oriented along the (1,1,1) spatial axis, providing the
framework for a 3D cluster state.
Conclusions and outlook.— We proposed a protocol to

generate macroscopic cluster states in 3D lattice arrays of
ultracold atoms via dynamical evolution. The progress of
individual atom control and manipulation offered by
quantum gas microscopes [55,56], optical tweezers [57],
as well as the recent capability of micron-resolution spatial
imaging with submillihertz frequency resolution in optical
lattice clocks [28] are already allowing experiments to
prepare the high-fidelity Mott insulators needed for high
quality cluster states. Combined with long-coherent times
offered by AEs, our protocol can open a path for first
proof-of-principle demonstrations of one-way computing
schemes in the near future.
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