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The difficulty to simulate the dynamics of open quantum systems resides in their coupling to many-body
reservoirswith exponentially largeHilbert space.Applying a tensor network approach in the time domain,we
demonstrate that effective small reservoirs can be defined and used for modeling open quantum dynamics.
The key element of our technique is the timeline reservoir network (TRN), which contains all the information
on the reservoir’s characteristics, in particular, thememory effects timescale. TheTRNhas a one-dimensional
tensor network structure, which can be effectively approximated in full analogy with the matrix product
approximation of spin-chain states.We derive the sufficient bond dimension in the approximated TRNwith a
reduced set of physical parameters: coupling strength, reservoir correlation time, minimal timescale, and the
system’s number of degrees of freedom interactingwith the environment. The bond dimension can be viewed
as ameasure of the open dynamics complexity. Simulation is based on the semigroup dynamics of the system
and effective reservoir of finite dimension. We provide an illustrative example showing the scope for new
numerical and machine learning-based methods for open quantum systems.
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Introduction.—One of the most challenging and impor-
tant problems of modern theoretical physics is the accurate
simulation of an interacting many-body system. As the
dimension of its Hilbert space grows exponentially with the
system size, direct simulations become impossible. Exactly
solvable models exist nonetheless [1]; they provide some
insights into the properties of actual physical systems.
Perturbation theory can be used only for problems that can
be split into an exactly solvable part and a perturbative one
provided that a relevant small parameter (e.g., weak
interaction strength with respect to other energy scales)
can be defined. For strongly interacting many-body sys-
tems, a range of techniques including, e.g., the Bethe ansatz
[2], the dynamical mean field theory [3,4], or the slave
boson techniques [5,6] have been developed and applied
to problems like the diagonalization of the Kondo
Hamiltonian or the Anderson impurity model [7–11].
Numerical approaches, which may significantly go beyond
the range of applicability of analytical methods, have been
also developed and proved quite successful, though they
suffer from limits. For example, methods based on tensor
networks [12–14] and the density matrix renormalization
group [15–17] work well mainly for one-dimensional
models. Quantum Monte Carlo (QMC) methods provide
reliable ways to study the many-body problem [18], but for
interacting fermion systems these approaches are plagued
by the sign problem [19].

Unitary evolution of a many-body system is completely
out of reach: dynamical versions of QMC calculations or
efficient methods like the time-evolving block decimation
algorithm cannot predict long-term time dynamics because
of the Lieb-Robinson bound [20–23]. Having experimental
access only to a part of a many-body system, one in fact
deals with an open quantum dynamics of the subsystem (S),
whereas the rest of the particles (modes) play the role
of environment also referred to as reservoir (R); see
Fig. 1(a). The subsystem is described by a density operator
ρSðtÞ ¼ trR½UðtÞρð0ÞU†ðtÞ�, the evolution of which is still
challenging to determine though the subsystem is relatively
small compared to the environment [24,25]: the partial
trace, trR, disregards the environment degrees of freedom
(d.o.f.) but ρð0Þ is the initial state of the whole many-
body system and its evolution operator is UðtÞ ¼ e−itH.
There exist particular exactly solvable models of open
quantum dynamics [26–28]; however, without the Markov

FIG. 1. Schematic of reservoir truncation.
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approximation the problem of open dynamics is typically
impossible to solve directly because of the exponentially
large dimension of the reservoir’s Hilbert space [25,29,30].
Examples of complex open dynamics in structured reser-
voirs, where it is necessary to go beyond the Markov
approximation, are presented in Refs. [31–42]. Therefore,
new, numerically tractable approaches permitting signifi-
cant progress in the field of open quantum dynamics
simulation are highly desirable, and their development
constitutes a timely challenge, especially in the study of
quantum control and dynamical decoupling [40–42],
and quantum dynamics induced by many-body reservoirs
[43–46].
In this work, we show that the actual infinite environment

can be replaced by a finite-dimensional effective reservoir
(ER) in such a way that the aggregate “Sþ ER” experiences
semigroup dynamics, see Fig. 1(b). This approach resembles
the idea ofMarkovian embedding of non-Markovian dynam-
ics [47–50] and the pseudomode method [51–53]. Our main
result is the estimation of the minimal (sufficient) dimension
dER of the effective reservoir expressed through a reduced
set of parameters. Knowledge of dER enables one to
efficiently simulate the complex dynamics of a subsystem
of dimension dS via ρSðtÞ ¼ trER½eLtρSþERð0Þ�, where the
Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) genera-
tor L [54,55] is easy to parametrize in this case: L acts on
dSdER × dSdER matrices and can be numerically found via
machine learning techniques provided a sequence of mea-
surements on the subsystem is performed [56]. Another
machine learning algorithm [57] estimates dER within the
training range dER ¼ 1, 2, 8, 16 based on interventions in the
open qubit evolution at 4 time moments.
Open quantum systems properties.—Let HS and HR be

Hilbert spaces of subsystem and reservoir, respectively.
Typically dimðHSÞ ≪ dimðHRÞ as HS could be associated
with, e.g., a qubit or other small system, and HR with a
many-body quantum environment of a huge dimension.
The total Hilbert space is H ¼ HS ⊗ HR. As the environ-
ment is assumed to be in the thermodynamic limit, the
dynamics of ρSðtÞ is irreversible; i.e., the Poincaré recur-
rence time is infinite. When the subsystem and reservoir
exchange energy, thermalization is expected on a long
timescale [58], though the dynamics can be strongly non-
Markovian at finite times [59].
The total Hamiltonian readsH ¼ H0 þHint, whereH0¼

HS⊗1þ1⊗HR involves individual Hamiltonians of sub-
system and reservoir,Hint¼γ

P
n
i¼1Ai⊗Bi is the interaction

part with characteristic interaction strength γ; n is the
effective subsystem’s number of d.o.f. interacting with the
reservoir. Denote BiðtÞ ¼ U†ðtÞBiUðtÞ, then gijðt; t − sÞ ¼
tr½B†

i ðtÞBjðt − sÞρð0Þ� − tr½B†
i ðtÞρð0Þ�tr½Bjðt − sÞρð0Þ� is

the reservoir correlation function [60]. Suppose gijðt;t−sÞ
decays exponentially with the growth of s over a character-
istic time sij (see examples in Refs. [61,62]), then T ¼
maxijsij is the reservoir correlation time. Suppose the

Fourier transform of the reservoir correlation function
decays significantly at the characteristic frequency Ωij, then
τ ¼ ðmaxijΩijÞ−1 defines the minimal timescale in the
dynamics. In the case of a bosonic bath, τ ¼ ω−1

c , where
ωc is the cutoff frequency of the spectral function [63]. Our
approach to determine the dimension dER of the truncated
environment is based on tensor network formalism in the
time domain, where the building blocks are responsible for
evolution during time τ and the ancillary space is capable of
transferring temporal correlations for the period T.
Therefore, dER depends only on the following few physical
parameters: γ, n, τ, and T.
Tensor network representation of open quantum

dynamics.—For simplicity, we resort to the vector repre-
sentation of a density operator:

ρ ¼
X
jk

ρjkjjihkj → jρi ¼
X
jk

ρjkjji ⊗ jki; ð1Þ

which implies QρP → Q ⊗ PT jρi. The dynamics of the
whole system reads

jρðtÞi ¼ exp½−itH� ⊗ exp½itHT �jρð0Þi: ð2Þ

The initial state ρð0Þ can be correlated in general, i.e.,

ρð0Þ ¼ P
lσ

ðlÞ
S ⊗ σðlÞR . The subsystem state ρSðtÞ ¼ trRρðtÞ

in terms of vectors reads jρSðtÞi ¼ hψþjjρðtÞi, where
hψþj ¼

PdR
j¼1 1S ⊗ hjj ⊗ 1S ⊗ hjj. For further conven-

ience we introduce a new order of Hilbert spaces:
HH ⊗ HH ⊗ H†

H ⊗ H†
H → HH ⊗ H†

H ⊗ HH ⊗ H†
H.

The minimal timescale τ is a time step in discretized
evolution; τ can always be reduced in such a way that
γτ ≪ 1, which permits application of the Trotter decom-
position [64]. Note that we do not restrict our framework to
a weak coupling between a subsystem and reservoir
(γ ≪ kH0kÞ; we rather adjust the minimal timescale τ in
accordance with the interaction strength, which yields

jρðtÞi¼Φ0ðτÞΦintðτÞ���Φ0ðτÞΦintðτÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
t=τtimes

jρð0ÞiþOðγτÞ; ð3Þ

where Φ0ðτÞ and ΦintðτÞ are responsible for the non-
interactive and interactive evolutions of the subsystem
and environment:

Φ0ðτÞ ¼ exp ½−iτHS� ⊗ exp ½iτHT
S �

⊗ exp ½−iτHR� ⊗ exp ½iτHT
R�; ð4Þ

ΦintðτÞ ¼
X2n
i¼0

AiðτÞ ⊗ BiðτÞ; ð5Þ
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AiðτÞ ¼

8>><
>>:

1 ⊗ 1 if i ¼ 0;ffiffiffiffiffi
γτ

p
Ai ⊗ 1 if 1 ≤ i ≤ n;ffiffiffiffiffi

γτ
p

1 ⊗ AT
i−n if i ≥ nþ 1;

ð6Þ

BiðτÞ ¼

8>><
>>:

1 ⊗ 1 if i ¼ 0;

−i ffiffiffiffiffi
γτ

p
Bi ⊗ 1 if 1 ≤ i ≤ n;

i
ffiffiffiffiffi
γτ

p
1 ⊗ BT

i−n if i ≥ nþ 1.

ð7Þ

The tensor network representation to calculate jρSðtÞi is
presented in Fig. 2. It is a particular case of the general
quantum circuits [65–69]. Each building block withm arms
corresponds to a tensor of rank m. Connecting links denote
contractions over the same indices. The vector jρðtÞi has
two multi-indices j ¼ ðjS; jRÞ and k ¼ ðkS; kRÞ, so it is
represented as a tensor of rank 4. The upper (bottom) row
corresponds to the d.o.f. of subsystem S (reservoir R). The
operator Φ0ðτÞ is depicted by solid squares. The dashed
squares with a link between them denote the operator
ΦintðτÞ, with the link being responsible for summationP

2n
i¼0 in formula (5). Concatenation with the building block

ψþ in the right bottom of Fig. 2 corresponds to the partial
trace over R and will be further denoted by connecting
link ⊃.
A key object in our study is the tensor in Fig. 3(c), which

we call a timeline reservoir network (TRN). The TRN
contains all the information on the reservoir and controls all
features of open dynamics, including dissipation, Lamb
shift, and memory effects like revivals [25]. From the
computational viewpoint, for a fixed time t, TRN is a tensor
with t=τ indices. Since the physical reservoir has a finite

memory depth T, the considered tensor must have vanish-
ing correlations between apart indices. Tensors of such a
type can be effectively approximated by one-dimensional
tensor networks of matrix-product (MP) form.
The TRN is closely related to the recent reformulations

of the Feynman-Vernon path integrals [63,73–76] and the
process tensor [68,70–72], see Figs. 3(a)–3(b). In fact,
the influence functional in Fig. 3(b) can be explicitly
calculated in the case of a bosonic bath linearly coupled
to the system [77] but it remains difficult to contract
with the system initial state and unitary evolution tensors,
so in Refs. [73–75] the contraction calculation is appro-
ximated by fixing a finite memory depth K ¼ T=τ.
References [63,76] further use MP approximation of the
influence functional (with rank λmax and accuracy λc),
which allows us to deal with longer memory depths. Since
λmax is d2ER in our model, we actually estimate the
complexity (λmax) of the algorithm in Ref. [63].
MP approximation of the TRN.—From a mathematical

viewpoint, the constructed TRN can be treated as a pure
multipartite quantum state jψi, where summation index
im ¼ 0;…; 2n at time moment tm ¼ mτ plays the role of
the physical index assigned to the mth particle:

jψi¼
X

l;i1;i2;…;iN

ψ li1i2…iN jli⊗ ji1i⊗ ji2i⊗…⊗ jiNi: ð8Þ

The only difference between the TRN and jψi is the
normalization: TRN ∝ jψi, hψ jψi ¼ 1.
A multipartite quantum state jψi with a finite correlation

length L can be effectively described via MP approxima-
tion [12]. The benefit of such an approximation is that it is
able to reproduce spatial correlations among particles
within the characteristic length L. The effectiveness of
approximation means that the bond dimension r of the
ancillary space (rank of MP state) is rather small. Similarly,
the TRN is able to effectively reproduce temporal corre-
lations within the period T with a rather small dimension
dER of effective reservoir. Since we deal with matrices, d2ER
is equivalent to the rank of corresponding MP state. The
dimension of the physical space in the MP state is 2nþ 1,
where n is the number of the subsystem’s d.o.f. involved in
the interaction with environment. Note that n ≤ d2S. The
physics of MP approximations for states and TRN is
summarized in Table I.
Suppose jψ ðrÞi is a rank-r MP approximation of the

pure state jψi. The approximation error ϵðrÞ equals the
Frobenius distance between jψ ðrÞi and jψi. Consider jψi as
a bipartite state, with parties being separated by a cut
between themth and (mþ 1)th particle. MP approximation
effectively disregards low-weight contributions in the
Schmidt decomposition of jψi with respect to such a
cut. The approximation error ϵðrÞ is related to the Rényi
entropy of order α (0 < α < 1), Sα of a single reduced
density operator as follows [78]:

FIG. 2. Tensor network for open system dynamics.

(a)

(b)

(c)

FIG. 3. (a) Process tensor T ðt1; t3; tnÞ [68,70–72]. (b) Influence
functional [63,73–76]. (c) Timeline reservoir network.
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ln½ϵðrÞ� ≤ 1 − α

α

�
Sα − ln

�
r

1 − α

��
; ð9Þ

from which one readily obtains the sufficient bond dimen-
sion guaranteeing the arbitrary desired accuracy ϵ:

rsuffðϵÞ ¼ min
0<α<1

ð1 − αÞϵ−α=ð1−αÞ expðSαÞ: ð10Þ

In the language of TRN, the sufficient rank is the square
of minimal dimension of effective reservoir, d2ER, which can
reproduce all temporal correlations with error ϵ. Therefore,
to find dER one needs to estimate the Rényi entropy Sα of
tensor in Fig. 4 considered as a matrix M with 2 multi-
indices ðl; i1;…; imÞ and ðl0; i01;…; i0mÞ:

Mðl;i1;…;imÞ;ðl0;i01;…;i0mÞ

¼
X

imþ1;…;iN

ψ l;i1;…;im;imþ1;…;iNψ
�
l0;i0

1
;…;i0m;imþ1;…;iN

: ð11Þ

The Rényi entropy reads [79]:

Sα ≲ 1

1 − α
ln
½1þ 2nðγτÞα�T=τ
ð1þ 2nγτÞαT=τ ≈ 2nγT

ðγτÞα−1 − α

1 − α
: ð12Þ

The entropy Sα is a measure of the time correlations in
TRN. Substituting Eq. (12) in Eq. (10), we obtain the
sufficient rank rsuff of MP approximation of TRN with
desired physical properties (parameters γ, n, T, τ) and
accuracy ϵ. On the other hand, the rank of MP approxi-
mation is the square of the dimension dER of the effective

reservoir that can reproduce all the features of open
dynamics (including memory effects) with accuracy ϵ.
Therefore, it is possible to simulate the complex open
system dynamics by using the effective reservoir of
dimension

dERðϵÞ ¼ min
0<α<1

ffiffiffiffiffiffiffiffiffiffiffi
1 − α

p

ϵα=2ð1−αÞ
exp

�
nγT

ðγτÞα−1 − α

1 − α

�
: ð13Þ

Once the effective reservoir is constructed, the aggregate
Sþ ER experiences the semigroup dynamics. This follows
from the tensor network representation in Fig. 2. The TRN
has a homogeneous structure and so does its MP approxi-
mation. The regular structure of building blocks in the time
scale means that the same transformation 1þ τL acts on
Sþ ER between the successive times mτ and ðmþ 1Þτ.
The GKSL generator L [54,55] acts on dSdER × dSdER
density matrices and guarantees complete positivity of
evolution.
Discussion.—Although the actual environment con-

sists of infinitely many modes, the developed theory
facilitates the simulation of complex open system dynamics
with a finite dimensional effective reservoir. The sufficient
dimension dER depends on two combinations of physical
parameters: nγT and γτ. Figure 5 shows that one can
simulate the open dynamics on a classical computer for a
wide range of parameters: nγT and γτ, accounting for all
potential initial correlations between the system and its
environment.
The first illustrative example is a decay of the two-

level system (qubit) in a multimode environment [79]. We
compare the exactly solvable qubit dynamics, the Markov
approximation (d0ER ¼ 1), and the approximation obtained
with the reservoir of fixed dimension (d00ER ¼ 2). Figure 6
shows that the best Markovian approximation cannot
reproduce oscillations in the exact dynamics, whereas
the approximation with the fixed dimension d00ER ¼ 2 fits
well the exact dynamics when the simulation complexity
dER ∼ d00ER. However, if dER is several orders of magnitude
larger than d00ER, then the approximation is not able to
reproduce memory effects present in the exact solution.
Thus, dER does quantify the complexity of dynamics.

FIG. 4. Reduced matrix of TRN.

TABLE I. Correspondence between physical descriptions of
pure quantum states and TRN in MP approximation.

MP approximation of states MP approximation of TRN

Position of mth particle in
space

Time moment tm ¼ mτ on
timeline

Dimension of a particle’s
Hilbert space

Twice the number of
subsystem’s d.o.f. plus one,
2nþ 1

Rank, bond dimension r
(dimension of ancillary
space)

Square of dimension of
effective reservoir, d2ER

Correlation length, L Reservoir correlation time, T

FIG. 5. Number of qubits log2ðdERÞ in effective reservoir,
which is sufficient for simulation of open dynamics with accuracy
ϵ ¼ 0.05. nγT is dimensionless memory time and γτ is dimen-
sionless minimal timescale.
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The second example is the double quantum dot charge
qubit coupled to piezoelectric acoustic phonons [62]. Here,
n ¼ 1, T ≈ 4τ, τ ¼ ω−1

c , γ ¼ 0.05ωc, and ωc ¼ 83 GHz is
the cutoff frequency of the spectral function. Equation (13)
yields log2 dER ¼ 4 for ϵ ¼ 0.05; i.e., the non-Markovian
qubit dynamics can be embedded into a Markovian
evolution of the very qubit and 4 auxiliary ones.
The third example is the non-Markovian evolution of the

qubit due to interaction with the dissipative pseudo-
mode [52,53]: ðdρ=dtÞ¼−i½H0;ρ�þΓðaρa†−1

2
fa†a;ρgÞ,

where H0 ¼ ω0σþσ− þ ωa†aþΩ0σxða† þ aÞ and ρ is
the density operator for the qubit and the pseudomode.
Physical parameters are n ¼ 1, T ¼ Γ−1, τ ¼ ω−1,
γ ¼ Ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þ 1

p
, where n0 is the effective number of

photons in the pseudomode. Our result, Eq. (13), estimates
where the pseudomode oscillator can be truncated (Fock
states with number of photons less than dER) to reproduce
the system dynamics with precision ϵ at any time despite
the memory effects and the counterrotating terms in H0. In
this example, construction of the effective reservoir reduces
to the subspace spanned by dER lowest energy states of the
pseudomode because the particular dissipator forces the
pseudomode to the ground state.
There are physical scenarios in which the structure of the

effective reservoir follows from the model. For instance, in
a nitrogen-vacancy center in diamond, the inherent nitrogen
(14N) nuclear spin (I ¼ 1) serves as an effective reservoir
for the electronic spin qubit [42]. In this case, dER ¼ 3.
Similarly, in a composite bipartite collision model [83], dER
is given by the size of an ancillary system. In general,
however, the structure of the effective reservoir is to be
determined from the experimental data. Reference [56]
proposes a machine learning algorithm to reconstruct the
generator L based on a series of repeated measurements on
the open system.
Finally, our result is applicable to the influence func-

tional tensor networks in Refs. [63,76], where the analytical
solution for open dynamics is not accessible, and provides

the upper bound on the maximum bond dimension,
λmax < d2ER. Conversely, for a fixed computationally trac-
table size of bond dimension, e.g., λmax ∼ 103, our result
provides the region of physical parameters γτ and nγT, for
which the algorithm in Ref. [63] definitely works well.
Importantly, the TRN is a multidimensional tensor, so it

can be approximated with MP form but also with other
constructions like multiscale entanglement renormalization
ansatz [84,85] or artificial neural networks [86,87]. The
benefit of such networks is that time correlations in the
environment do not have to decay exponentially as for
the MP approximation.
Conclusion.—We gave a definition of simulation com-

plexity of open quantum dynamics in terms of a reservoir’s
effective dimension. We showed that the tensor networks’
approach can be utilized to analyze memory effects in open
dynamics. We provided an estimation of simulation com-
plexity using a set of physical parameters. Our estimation is
universal and fits well the arbitrary open quantum dynam-
ics with finite memory.

The authors thank Alexey Akimov, Mikhail Krechetov,
Eugene Polyakov, Alexey Rubtsov, and Mario Ziman for
fruitful discussions. The study is supported by Russian
Foundation for Basic Research under Project No. 18-37-
20073. I. A. L. thanks the Russian Foundation for Basic
Research for partial support under Project No. 18-37-00282.

[1] B. Sutherland, Beautiful Models: 70 Years of Exactly
Solved Quantum Many-Body Problems (World Scientific,
Singapore, 2004).

[2] H. Bethe, Z. Phys. 71, 205 (1931).
[3] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,

Rev. Mod. Phys. 68, 13 (1996).
[4] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O.

Parcollet, and C. A. Marianetti, Rev. Mod. Phys. 78, 865
(2006).

[5] S. E. Barnes, J. Phys. F 6, 1375 (1976).
[6] G. Kotliar and A. E. Ruckenstein, Phys. Rev. Lett. 57, 1362

(1986).
[7] N. Andrei, Phys. Rev. Lett. 45, 379 (1980).
[8] P. B. Wiegmann, Phys. Lett. A 80, 163 (1980).
[9] A. Georges and G. Kotliar, Phys. Rev. B 45, 6479 (1992).

[10] R. Frésard, H. Ouerdane, and T. Kopp, Nucl. Phys. B785,
286 (2007).

[11] R. Frésard, H. Ouerdane, and T. Kopp, Europhys. Lett. 82,
31001 (2008).

[12] R. Orús, Ann. Phys. (Amsterdam) 349, 117 (2014).
[13] R. Orús, Eur. Phys. J. B 87, 280 (2014).
[14] F. Verstraete, V. Murg, and J. I. Cirac, Adv. Phys. 57, 143

(2008).
[15] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[16] U. Schollwöck, Ann. Phys. (Amsterdam) 326, 96 (2011).
[17] U. Schollwöck, Phil. Trans. R. Soc. A 369, 2643 (2011).
[18] D. P. Landau and K. Binder, A Guide to Monte Carlo

Simulations in Statistical Physics (Cambridge University
Press, Cambridge, England, 2009).

FIG. 6. Typical evolutions of parameter tr½σzρðtÞ� of open qubit
system ρðtÞ for different values of simulation complexity
dERð0.05Þ [79]. Dotted lines depict the exact dynamics. Dashed
lines depict the best Markov approximations (d0ER ¼ 1). Solid
lines are the approximations obtained with the reservoir of fixed
dimension d00ER ¼ 2.

PHYSICAL REVIEW LETTERS 122, 160401 (2019)

160401-5

https://doi.org/10.1007/BF01341708
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1088/0305-4608/6/7/018
https://doi.org/10.1103/PhysRevLett.57.1362
https://doi.org/10.1103/PhysRevLett.57.1362
https://doi.org/10.1103/PhysRevLett.45.379
https://doi.org/10.1016/0375-9601(80)90212-1
https://doi.org/10.1103/PhysRevB.45.6479
https://doi.org/10.1016/j.nuclphysb.2007.05.025
https://doi.org/10.1016/j.nuclphysb.2007.05.025
https://doi.org/10.1209/0295-5075/82/31001
https://doi.org/10.1209/0295-5075/82/31001
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1140/epjb/e2014-50502-9
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1098/rsta.2010.0382


[19] E. Y. Loh, Jr., J. E. Gubernatis, R. T. Scalettar, S. R. White,
D. J. Scalapino, and R. L. Sugar, Phys. Rev. B 41, 9301
(1990).

[20] E. Lieb and D. Robinson, Commun. Math. Phys. 28, 251
(1972).

[21] U. Schollwöck, DMRG: Ground states, time evolution, and
spectral functions, in Emergent Phenomena in Correlated
Matter, edited by E. Pavarini, E. Koch, and U. Schollwöck
(Verlag des Forschungszentrum, Jülich, 2013).

[22] T. Prosen and M. Žnidarič, Phys. Rev. E 75, 015202(R)
(2007).

[23] H.-T. Chen, G. Cohen, and D. R. Reichman, J. Chem. Phys.
146, 054106 (2017).

[24] E. B. Davies, Quantum Theory of Open Systems (Academic
Press, London, 1976).

[25] H.-P. Breuer and F. Petruccione, The Theory of Open
Quantum Systems (Oxford University Press, Oxford, 2002).

[26] J. Rau, Phys. Rev. 129, 1880 (1963).
[27] G. M. Palma, K.-A. Suominen, and A. K. Ekert, Proc. R.

Soc. A 452, 567 (1996).
[28] S. N. Filippov, J. Piilo, S. Maniscalco, and M. Ziman,

Phys. Rev. A 96, 032111 (2017).
[29] R. Alicki and K. Lendi, Quantum Dynamical Semi-Groups

and Applications, Lecture Notes Physics (Springer-Verlag,
Berlin, 1987), Vol. 286.

[30] A. S. Holevo, Quantum Systems, Channels, Information. A
Mathematical Introduction (de Gruyter, Berlin/Boston,
2012).

[31] B.-H. Liu, L. Li, Y.-F. Huang, C.-F. Li, G.-C. Guo, E.-M.
Laine, H.-P. Breuer, and J. Piilo, Nat. Phys. 7, 931 (2011).

[32] C. Navarrete-Benlloch, I. de Vega, D. Porras, and J. I. Cirac,
New J. Phys. 13, 023024 (2011).

[33] J. Ma, Z. Sun, X. Wang, and F. Nori, Phys. Rev. A 85,
062323 (2012).

[34] U. Hoeppe, C. Wolff, J. Küchenmeister, J. Niegemann, M.
Drescher, H. Benner, and K. Busch, Phys. Rev. Lett. 108,
043603 (2012).

[35] W. L. Yang, J.-H. An, C. Zhang, M. Feng, and C. H. Oh,
Phys. Rev. A 87, 022312 (2013).

[36] K. Roy-Choudhury and S. Hughes, Optica 2, 434 (2015).
[37] S. Gröblacher, A. Trubarov, N. Prigge, G. D. Cole, M.

Aspelmeyer, and J. Eisert, Nat. Commun. 6, 7606 (2015).
[38] A. González-Tudela and J. I. Cirac, Phys. Rev. Lett. 119,

143602 (2017).
[39] M. Wittemer, G. Clos, H.-P. Breuer, U. Warring, and T.

Schaetz, Phys. Rev. A 97, 020102(R) (2018).
[40] F. Wang, P.-Y. Hou, Y.-Y. Huang, W.-G. Zhang, X.-L.

Ouyang, X. Wang, X.-Z. Huang, H.-L. Zhang, L. He, X.-Y.
Chang, and L.-M. Duan, Phys. Rev. B 98, 064306 (2018).

[41] S. Peng, X. Xu, K. Xu, P. Huang, P. Wang, X. Kong, X.
Rong, F. Shi, C. Duan, and J. Du, Sci. Bull. 63, 336 (2018).

[42] J. F. Haase, P. J. Vetter, T. Unden, A. Smirne, J. Rosskopf, B.
Naydenov, A. Stacey, F. Jelezko, M. B. Plenio, and S. F.
Huelga, Phys. Rev. Lett. 121, 060401 (2018).

[43] M. Žnidarič, C. Pineda, and I. García-Mata, Phys. Rev. Lett.
107, 080404 (2011).

[44] O. Viyuela, A. Rivas, and M. A. Martin-Delgado, Phys. Rev.
B 86, 155140 (2012).

[45] R. Vasseur, S. A. Parameswaran, and J. E. Moore, Phys.
Rev. B 91, 140202(R) (2015).

[46] U. Marzolino and T. Prosen, Phys. Rev. B 96, 104402
(2017).

[47] A. A. Budini, Phys. Rev. A 88, 032115 (2013).
[48] S. Xue, M. R. James, A. Shabani, V. Ugrinovskii, and I. R.

Petersen, Quantum filter for a class of non-Markovian
quantum systems, 54th IEEE Conference on Decision
and Control (Osaka, Japan) (IEEE, 2015), pp. 7096–7100.

[49] S. Xue, T. Nguyen, M. R. James, A. Shabani, V. Ugrinovskii,
and I. R. Petersen, arXiv:1704.00986.

[50] D. Tamascelli, A. Smirne, S. F. Huelga, and M. B. Plenio,
Phys. Rev. Lett. 120, 030402 (2018).

[51] A. Imamoglu, Phys. Rev. A 50, 3650 (1994).
[52] B. M. Garraway, Phys. Rev. A 55, 2290 (1997).
[53] L. Mazzola, S. Maniscalco, J. Piilo, K.-A. Suominen, and

B. M. Garraway, Phys. Rev. A 80, 012104 (2009).
[54] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math.

Phys. (N.Y.) 17, 821 (1976).
[55] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
[56] I. A. Luchnikov, S. V. Vintskevich, D. A. Grigoriev, and

S. N. Filippov, arXiv:1902.07019.
[57] S. Shrapnel, F. Costa, and G. Milburn, Int. J. Quantum.

Inform. 16, 1840010 (2018).
[58] R. Kosloff, Entropy 15, 2100 (2013).
[59] I. de Vega and D. Alonso, Rev. Mod. Phys. 89, 015001

(2017).
[60] H. F. Arnoldus and T. F. George, J. Math. Phys. (N.Y.) 28,

2731 (1987).
[61] U. Weiss, Quantum Dissipative Systems, 2nd ed. (World

Scientific, Singapore, 1999).
[62] M. Thorwart, J. Eckel, and E. R. Mucciolo, Phys. Rev. B 72,

235320 (2005).
[63] A. Strathearn, P. Kirton, D. Kilda, J. Keeling, and B.W.

Lovett, Nat. Commun. 9, 3322 (2018).
[64] M. Suzuki, J. Math. Phys. (N.Y.) 26, 601 (1985).
[65] G. Chiribella, G. M. D’Ariano, and P. Perinotti, Phys. Rev.

Lett. 101, 060401 (2008).
[66] G. Chiribella, G. M. D’Ariano, and P. Perinotti, Phys. Rev.

A 80, 022339 (2009).
[67] L. Hardy, Phil. Trans. R. Soc. A 370, 3385 (2012).
[68] S. Milz, F. A. Pollock, and K. Modi, Open Syst. Inf. Dyn.

24, 1740016 (2017).
[69] F. Costa and S. Shrapnel, New J. Phys. 18, 063032 (2016).
[70] F. A. Pollock, C. Rodríguez-Rosario, T. Frauenheim,

M. Paternostro, and K. Modi, Phys. Rev. A 97, 012127
(2018).

[71] F. A. Pollock, C. Rodríguez-Rosario, T. Frauenheim, M.
Paternostro, and K. Modi, Phys. Rev. Lett. 120, 040405
(2018).

[72] S. Milz, F. A. Pollock, and K. Modi, Phys. Rev. A 98,
012108 (2018).

[73] N. Makri and D. E. Makarov, J. Chem. Phys. 102, 4611
(1995).

[74] E. Sim, J. Chem. Phys. 115, 4450 (2001).
[75] A. Strathearn, B. W. Lovett, and P. Kirton, New J. Phys. 19,

093009 (2017).
[76] M. R. Jørgensen and F. A. Pollock, arXiv:1902.00315.
[77] R. P. Feynman and F. L. Vernon, Ann. Phys. (N.Y.) 24, 118

(1963).
[78] F. Verstraete and J. I. Cirac, Phys. Rev. B 73, 094423

(2006).

PHYSICAL REVIEW LETTERS 122, 160401 (2019)

160401-6

https://doi.org/10.1103/PhysRevB.41.9301
https://doi.org/10.1103/PhysRevB.41.9301
https://doi.org/10.1007/BF01645779
https://doi.org/10.1007/BF01645779
https://doi.org/10.1103/PhysRevE.75.015202
https://doi.org/10.1103/PhysRevE.75.015202
https://doi.org/10.1063/1.4974329
https://doi.org/10.1063/1.4974329
https://doi.org/10.1103/PhysRev.129.1880
https://doi.org/10.1098/rspa.1996.0029
https://doi.org/10.1098/rspa.1996.0029
https://doi.org/10.1103/PhysRevA.96.032111
https://doi.org/10.1038/nphys2085
https://doi.org/10.1088/1367-2630/13/2/023024
https://doi.org/10.1103/PhysRevA.85.062323
https://doi.org/10.1103/PhysRevA.85.062323
https://doi.org/10.1103/PhysRevLett.108.043603
https://doi.org/10.1103/PhysRevLett.108.043603
https://doi.org/10.1103/PhysRevA.87.022312
https://doi.org/10.1364/OPTICA.2.000434
https://doi.org/10.1038/ncomms8606
https://doi.org/10.1103/PhysRevLett.119.143602
https://doi.org/10.1103/PhysRevLett.119.143602
https://doi.org/10.1103/PhysRevA.97.020102
https://doi.org/10.1103/PhysRevB.98.064306
https://doi.org/10.1016/j.scib.2018.02.017
https://doi.org/10.1103/PhysRevLett.121.060401
https://doi.org/10.1103/PhysRevLett.107.080404
https://doi.org/10.1103/PhysRevLett.107.080404
https://doi.org/10.1103/PhysRevB.86.155140
https://doi.org/10.1103/PhysRevB.86.155140
https://doi.org/10.1103/PhysRevB.91.140202
https://doi.org/10.1103/PhysRevB.91.140202
https://doi.org/10.1103/PhysRevB.96.104402
https://doi.org/10.1103/PhysRevB.96.104402
https://doi.org/10.1103/PhysRevA.88.032115
http://arXiv.org/abs/1704.00986
https://doi.org/10.1103/PhysRevLett.120.030402
https://doi.org/10.1103/PhysRevA.50.3650
https://doi.org/10.1103/PhysRevA.55.2290
https://doi.org/10.1103/PhysRevA.80.012104
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1007/BF01608499
http://arXiv.org/abs/1902.07019
https://doi.org/10.1142/S0219749918400105
https://doi.org/10.1142/S0219749918400105
https://doi.org/10.3390/e15062100
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1103/RevModPhys.89.015001
https://doi.org/10.1063/1.527720
https://doi.org/10.1063/1.527720
https://doi.org/10.1103/PhysRevB.72.235320
https://doi.org/10.1103/PhysRevB.72.235320
https://doi.org/10.1038/s41467-018-05617-3
https://doi.org/10.1063/1.526596
https://doi.org/10.1103/PhysRevLett.101.060401
https://doi.org/10.1103/PhysRevLett.101.060401
https://doi.org/10.1103/PhysRevA.80.022339
https://doi.org/10.1103/PhysRevA.80.022339
https://doi.org/10.1098/rsta.2011.0326
https://doi.org/10.1142/S1230161217400169
https://doi.org/10.1142/S1230161217400169
https://doi.org/10.1088/1367-2630/18/6/063032
https://doi.org/10.1103/PhysRevA.97.012127
https://doi.org/10.1103/PhysRevA.97.012127
https://doi.org/10.1103/PhysRevLett.120.040405
https://doi.org/10.1103/PhysRevLett.120.040405
https://doi.org/10.1103/PhysRevA.98.012108
https://doi.org/10.1103/PhysRevA.98.012108
https://doi.org/10.1063/1.469509
https://doi.org/10.1063/1.469509
https://doi.org/10.1063/1.1394208
https://doi.org/10.1088/1367-2630/aa8744
https://doi.org/10.1088/1367-2630/aa8744
http://arXiv.org/abs/1902.00315
https://doi.org/10.1016/0003-4916(63)90068-X
https://doi.org/10.1016/0003-4916(63)90068-X
https://doi.org/10.1103/PhysRevB.73.094423
https://doi.org/10.1103/PhysRevB.73.094423


[79] See SupplementalMaterial at http://link.aps.org/supplemental/
10.1103/PhysRevLett.122.160401 for details, which includes
Refs. [80–82].

[80] I. Sason, Entropy 20, 896 (2018).
[81] M. A. Nielsen and G. Vidal, Quantum Inf. Comput. 1, 76

(2001).
[82] M. A. Nielsen and I. L. Chuang, Quantum Computation

and Quantum Information (Cambridge University Press,
Cambridge, England, 2000).

[83] S. Lorenzo, F. Ciccarello, and G. M. Palma, Phys. Rev. A
96, 032107 (2017).

[84] G. Vidal, Phys. Rev. Lett. 101, 110501 (2008).
[85] G. Evenbly and G. Vidal, Phys. Rev. Lett. 112, 240502

(2014).
[86] G. Carleo and M. Troyer, Science 355, 602 (2017).
[87] M. H. Amin, E. Andriyash, J. Rolfe, B. Kulchytskyy,

and R. Melko, Phys. Rev. X 8, 021050 (2018).

PHYSICAL REVIEW LETTERS 122, 160401 (2019)

160401-7

http://link.aps.org/supplemental/10.1103/PhysRevLett.122.160401
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.160401
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.160401
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.160401
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.160401
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.160401
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.160401
https://doi.org/10.3390/e20120896
https://doi.org/10.26421/QIC1.1
https://doi.org/10.26421/QIC1.1
https://doi.org/10.1103/PhysRevA.96.032107
https://doi.org/10.1103/PhysRevA.96.032107
https://doi.org/10.1103/PhysRevLett.101.110501
https://doi.org/10.1103/PhysRevLett.112.240502
https://doi.org/10.1103/PhysRevLett.112.240502
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1103/PhysRevX.8.021050

