
Silenko, Zhang, and Zou Reply: We are grateful to I. and
Z. Bialynicki-Birula for the interest in our Letter. The
preceding Comment is based on two assertions [1]. First,
the radius vector operator r defining particle coordinates in
the Dirac representation [but not in the Foldy-Wouthuysen
(FW) representation] corresponds to the classical radius
vector q describing a particle position. Second, the prob-
ability density should be determined in the Dirac repre-
sentation, ϱ ¼ ϱD ¼ Ψ†

DΨD, while the FW representation
distorts this quantity. Therefore, the authors of Ref. [1]
insist that the Dirac representation corrupting the connec-
tion between energy, momentum, and velocity provides the
right distribution of the probability density and the FW
representation, and restoring the Schrödinger picture of
relativistic quantum mechanics (QM) distorts this density.
However, QM leads to the opposite conclusion. The

problem of the position operator was definitely solved in
the 1960s. The famous work by Newton and Wigner [2]
established that the position operators are “related to the
structure of the unitary irreducible representations of the
Lorentz group” [3] and can be unambiguously determined
for any representation. The next developments [3–6]
(including those fulfilled by other methods [7–10]) have
confirmed the validity of the Newton-Wigner (NW)
approach. This approach uses equivalent commutation
relations for operators and classical variables (commutators
and Poisson brackets, respectively) explained in
Refs. [3–5]. We mention an important initial contribution
by Pryce [11].
Foldy and Wouthuysen have determined [12] that the

NW position operator and the radius vector in the FW
representation (“mean-position operator” [12]) are identi-
cal. This fundamental conclusion has been confirmed
in many papers [3–10,13–16]. For a free particle in the
Dirac representation, the NW mean-position operator
reads [12,17]

q ¼ r −
Σ × p

2EðEþmÞ þ
iγ
2E

−
iðγ · pÞp

2E2ðEþmÞ ; ð1Þ

where E is the particle energy. It has also been proven
[6,14–16,18–20] that the classical spin is equivalent to
the NW spin operator and the FW mean-spin operator.
In the FW representation, wave packets described by
the (1þ 1)-dimensional Dirac equation also behave
much more like a classical particle than in the Dirac
representation [21,22].
Since the particle position is correctly defined by the

radius vector in the FW representation, the probability
density should also be determined in this representation
(see our Letter [23]), ϱ ¼ ϱFW ¼ Ψ†

FWΨFW. Thus, the Dirac
representation distorts the probability density and the FW
wave function correctly defines it.
Contemporary relativistic QM in the FW representation

(see Refs. [24–26] and references therein) presents impor-
tant additional arguments in favor of this conclusion.

Relativistic FW Hamiltonians for a spin-1=2 particle in
electromagnetic fields are very similar to the corresponding
classical Hamiltonians. When the fields are uniform, the
gauge Φ ¼ −E · r;A ¼ ðB × rÞ=2 can be used and the
relativistic FW Hamiltonian [24,26–28] reads (ℏ ¼ 1,
c ¼ 1)

HFW ¼ β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ ðp − e
2
B × rÞ2

r

− eE · rþΩ · s; ð2Þ

where s ¼ Σ=2 is the spin operator and the operator Ω
defines the angular velocity of spin precession.
The classical limit of this Hamiltonian and the corre-

sponding classical Hamiltonian coincide [24,26,28,29].
This coincidence covering spin-dependent terms confirms
that just the FW radius vector is a counterpart of the
classical particle position. The validity of this conclusion
for spin-1 particles can be easily shown using Refs. [30,31].
The basic role of the FW representation in nonstationary

QM has been proven in Ref. [32]. The classical time-
dependent energy corresponds to the time-dependent
expectation value of the energy operator. The latter is
the Hamiltonian in the Schrödinger QM and the FW
representation (but not in the Dirac representation) [32].
The energy expectation values are defined by EðtÞ ¼
hHFWðtÞi ≠ hHDðtÞi [32].
The arguments presented by the authors do not sub-

stantiate their point of view. The mentioned spread of a
particle location [1] manifesting in the Darwin interaction is
a real physical effect but not a shortcoming of the FW
representation. In the Dirac representation, it appears in
Zitterbewegung [33].
The probability density obeys the continuity equation in

both the FW representation and Schrödinger QM because
this representation extends Schrödinger QM to the relativ-
istic region.
Equations (1) and (5)–(7) in the Comment are right. The

probability density depends on a representation [34]. The
result [1] is a particular case of a general connection
between the Dirac and FW wave functions at the exact
FW transformation (upper spinors in the two representa-
tions differ only by constant factors and lower FW spinors
vanish) [35].
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